Centrality of shortest paths: algorithms and complexity results

Dmytro Matsypura with Johnson Phosavanh

Discipline of Business Analytics, The University of Sydney

WOMBAT 2025

Outline

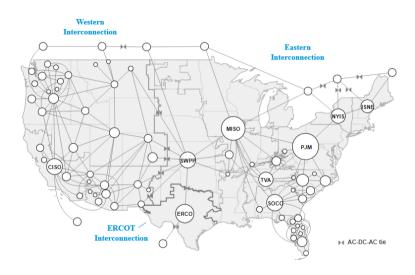
- preliminaries
- 2 main results
- degree centrality
- 4 k-step reach centrality
- betweenness centrality
- 6 closeness centrality
- conclusions

Motivation

'Networks are present everywhere. All we need is an eye for them.'

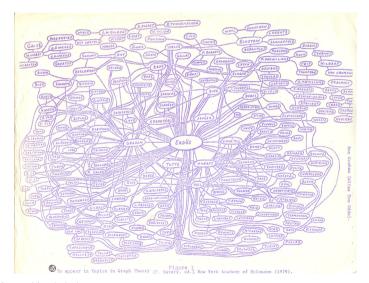
Albert-Lásló Barabási, Linked: The New Science of Networks.

Network of electric power distribution: USA power grid



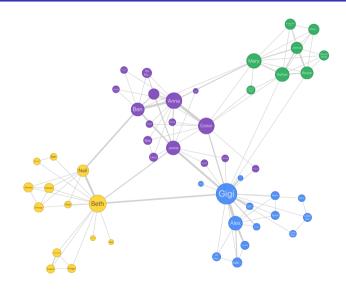
Source: hrefhttps://whyy.orghttps://whyy.org

Network of scientific collaboration of Paul Erdös circa 1979



Source: $http://www.math.cmu.edu/\!\sim\!ctsourak/amazing.html$

Network of social interactions: He's just not that into you (2009)



Source: http://moviegalaxies.com

Centrality is a measure of importance

- Centrality is a property of a node's position in a network.
- It is the node's contribution to the structure of the network.
- Centrality helps us answer the question: who or what is most important?
- It is not one thing but a family of concepts:
 - degree
 - betweenness
 - closeness
 - *k*-step reach
 - eigenvector
 - ...
- Some centrality measures can be extended to groups of nodes.
- We focus on **degree**, **betweenness**, **closeness** and *k*-**step reach** centrality.

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

Definitions

• Degree centrality of a node is its degree:

$$C_{\mathsf{deg}}(i) = \mathsf{deg}(i)$$

• Betweenness centrality of node *i* is:

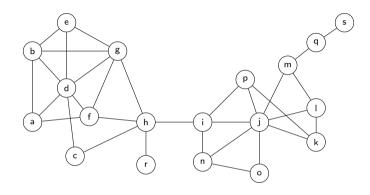
$$C_{\mathsf{btw}}(i) = \sum_{u < v \colon u, v \in V \setminus \{i\}} rac{g_{uv}(i)}{g_{uv}},$$

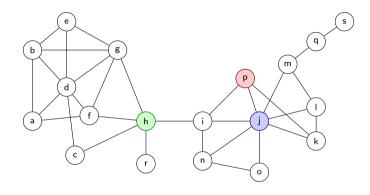
where $g_{uv}(i)$ is the number of shortest paths between nodes u and v that traverse through node i and g_{uv} is the total number of shortest paths between u and v.

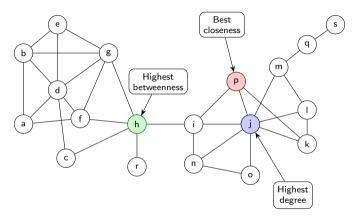
• Closeness centrality of a node is:

$$C_{\mathsf{cls}}(i) = \max_{u \in V} \{ d(i, u) \}.$$

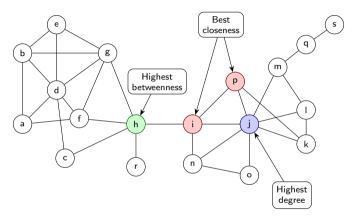
where d(i, u) is the distance between nodes i and u.







- j highest degree centrality
- h highest betweenness centrality
- p best closeness centrality



- j highest degree centrality
- h highest betweenness centrality
- p best closeness centrality

The most central shortest path problem

- Let G = (V, E) be an unweighted (possibly directed) graph.
- Let P be a path in G (a finite sequence of distinct adjacent vertices in G).

Problem (MCSP)

Given a graph G and a measure of centrality C(P), solve the following problem:

$$\max\{C(P): P \in \mathcal{SP}(G)\},\$$

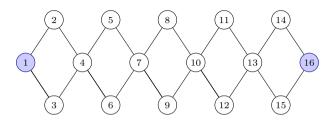
where SP(G) is the set of all shortest paths between all pairs of nodes in G.

In other words, we seek to find a path P with the largest centrality, provided that P is a shortest path between a pair of nodes in G.

Applications:

- Path-shaped facility location: segments of railroads, highways, pipelines
- Network design: routing air delivery service, subway, rail or bus service
- Defence: reconnaissance, recovery and aid delivery

Number of shortest paths can be exponential



- s = 1, t = 16
- number of shortest paths: $2^{(16-1)/3} = 2^5$
- shortest path length: 2(16-1)/3 = 10
- ullet can generalise by constructing graphs with 3n+1 nodes
 - s = 1, t = 3n + 1
 - ullet number of shortest paths: 2^n
 - ullet shortest path length: 2n

Outline

- preliminaries
- 2 main results
- degree centrality
- 4 k-step reach centrality
- **betweenness centrality**
- 6 closeness centrality
- conclusions

Problem (MCSP)

Given a graph G and a measure of centrality C(P), solve the following problem:

$$\max\{C(P): P \in \mathcal{SP}(G)\},\$$

where SP(G) is the set of all shortest paths between all pairs of nodes in G.

Centrality measure	Unweighted graph	Weighted graph
Betweenness	Р	Р
Degree	P	NP-hard
k-step reach	Р	?
Closeness	NP-hard	NP-hard

Table: Complexity status of the problems considered.

Outline

- preliminaries
- 2 main results
- degree centrality
- 4 k-step reach centrality
- betweenness centrality
- 6 closeness centrality
- conclusions

Node degree centrality

- Let G = (V, E) be an unweighted (possibly directed) graph
- The (open) **neighbourhood** of node u is the set of nodes adjacent to it:

$$\mathcal{N}(u) = \{v : (u, v) \in E\}$$

• **Degree** of node u is the size of its neighbourhood (i.e., number of adjacent nodes):

$$\deg(u) = |\mathcal{N}(u)|$$

• Degree centrality of node u is its degree:

$$C_{\mathsf{deg}}(u) = \mathsf{deg}(u)$$

Path degree centrality

- Recall that P is a path in G (a finite sequence of distinct adjacent vertices).
- The (open) **neighbourhood** of path P is the set of nodes adjacent to it:

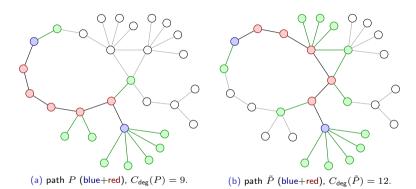
$$\mathcal{N}(P) = \{ v : (u, v) \in E, \ u \in P, \ v \notin P \}$$
$$= \bigcup_{u \in P} \mathcal{N}(u) \setminus P$$

• **Degree centrality** of path P is the size of its neighbourhood:

$$C_{\mathsf{deg}}(P) = |\mathcal{N}(P)|$$

Definition is consistent: if P is a singleton, i.e., |P| = 1, then $C_{\text{deg}}(P)$ reduces to **node degree centrality**.

WOMBAT 2025 centrality of shortest paths



Observations:

- ullet P (left) and \tilde{P} (right) are both shortest paths.
- ullet Neighbourhoods of P and \tilde{P} are depicted in green.
- $C_{\text{deg}}(P) = 9$ while $C_{\text{deg}}(\tilde{P}) = 12$, so \tilde{P} is more central than P.

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

Most degree-central shortest path problem

Problem (2)

Given a graph G=(V,E) and measure of centrality $C_{\text{deg}}(P)=|\mathcal{N}(P)|$, solve the following problem:

$$\max\{C_{deg}(P): P \in \mathcal{SP}(G)\},\$$

where SP(G) is the set of all shortest paths between all pairs of nodes in G.

Previous result:

- Matsypura et al. (2023)¹ proved that the problem is polynomial.
- They developed the MVP algorithm with the worst-case running time of $O(k|V|^6)$.
- ullet k is the diameter of G (length of the longest shortest path).
- Can we do better?

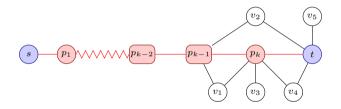
Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

 $^{^{1}}$ M, Veremyev, Pasiliao, Prokopyev (2023). Finding the most degree-central walks and paths in a graph: Exact and heuristic approaches.

Finding most degree-central shortest path

Lemma (most degree-central shortest path)

If $\langle s, p_1, \dots, p_{k-1}, p_k, t \rangle$ is a most degree-central shortest path from s to t, then $\langle s, p_1, \dots, p_{k-1} \rangle$ is a most degree-central shortest path from s to p_{k-1} .



Proof (sketch).

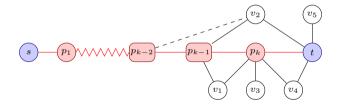
ullet t and p_{k-2} cannot have common neighbours

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

Finding most degree-central shortest path

Lemma (most degree-central shortest path)

If $\langle s, p_1, \ldots, p_{k-1}, p_k, t \rangle$ is a most degree-central shortest path from s to t, then $\langle s, p_1, \ldots, p_{k-1} \rangle$ is a most degree-central shortest path from s to p_{k-1} .



Proof (sketch).

- t and p_{k-2} cannot have common neighbours
- because if they did, there would have to be a shortcut

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

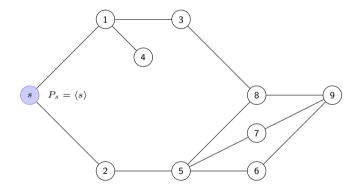


Figure: Example with starting node \boldsymbol{s}

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025 20 / 46

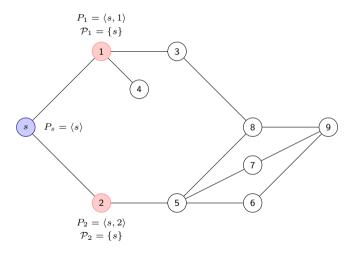


Figure: Example with starting node s

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025 20 / 46

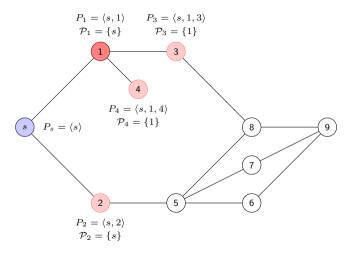


Figure: Example with starting node s

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

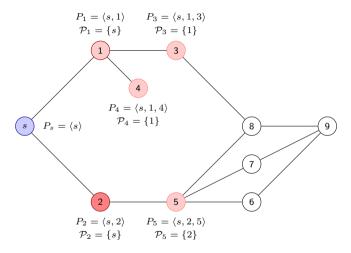


Figure: Example with starting node s

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

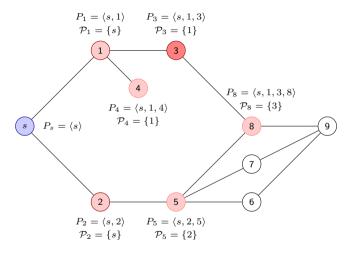


Figure: Example with starting node s

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

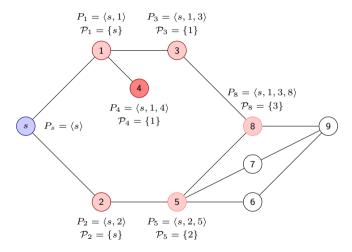


Figure: Example with starting node s

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

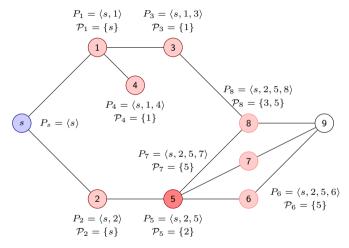


Figure: Example with starting node s

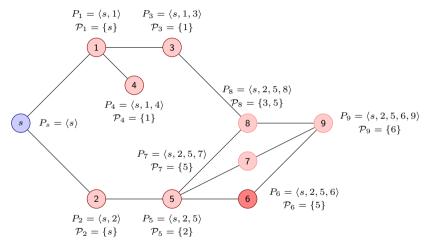


Figure: Example with starting node s

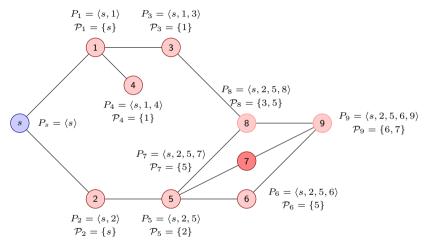


Figure: Example with starting node s

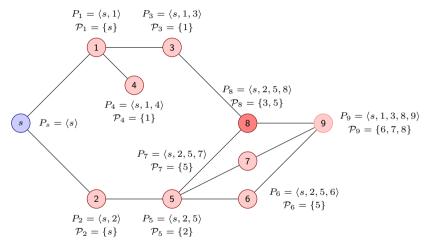


Figure: Example with starting node s

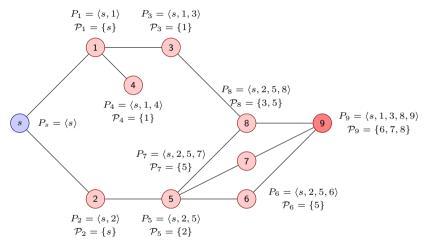


Figure: Example with starting node s

Algorithm 1: Finding the most degree-central shortest path

```
Input: Graph G = (V, E), starting vertex s.
Output: Most degree-central shortest path P_v from s to v for every v \in V.
 1. for v \in V do
          d_v \leftarrow +\infty, P_v \leftarrow undefined, \mathcal{P}_v = \emptyset.
 3: end for
 4. P<sub>e</sub> ← ⟨s⟩.
 5: Insert (0, s) to the queue Q.
 6: while Q not empty do
          (d_u, u) \leftarrow \text{pop next element of } Q.
          for v \in \{v' \in V : (u, v') \in E\} do
               d_{new} \leftarrow d_w + 1.
 9:
                if d_{\text{new}} = 1 then
10.
                     Insert (d_{new}, v) to the gueue Q.
11:
                    d_v \leftarrow d_{\text{new}}, P_v = \langle s, v \rangle, P_v \leftarrow \{s\}.
12:
                else if d_{new} < d_w then
13:
                     Insert (d_{new}, v) to the queue Q.
14:
15:
                    d_v \leftarrow d_{\text{new}}, \mathcal{P}_v \leftarrow \mathcal{P}_v \cup \{u\}.
                    for w \in \mathcal{P}_w do
16:
                          if C_{\text{deg}}(\langle P_w, u, v \rangle) > C_{\text{deg}}(P_v) then
17:
18:
                               P_v \leftarrow \langle P_w, u, v \rangle.
19:
                          end if
                     end for
20:
                else if d_{new} = d_v then
21:
22:
                     P_v \leftarrow P_v \cup \{u\}.
23:
                    for w \in \mathcal{P}_w do
                          if C_{\text{deg}}(\langle P_w, u, v \rangle) > C_{\text{deg}}(P_v) then
24:
                               P_v \leftarrow \langle P_w, u, v \rangle.
25:
                          end if
26:
27:
                    end for
                end if
28:
29:
          end for
```

Complexity of Algorithm 1

Theorem

Given a graph G=(V,E), the worst-case running time of Algorithm 1 is $O(|E||V|\Delta(G))$.

Corollary

The most degree-central shortest path problem can be solved in $O(|E||V|^2\Delta(G))$ time.

- This is (roughly) $|V|^2$ -more efficient than the MVP algorithm of Matsypura et al. (2023), which has the worst-case running time of $O(k|V|^6)$.
- $\Delta(G)$ is the degree of G (the largest degree of G's vertices).
- k is the diameter of G (length of the longest shortest path).

The case of weighted graphs

Theorem

The most degree-central shortest path problem on a weighted graph is NP-hard.

Proof (sketch).

Reduction from the Maximum Satisfiability (MaxSAT) problem.

Special cases:

- If edge weights are positive and integer-valued, Algorithm 1 runs in pseudo-polynomial time $O(w_{\text{sum}}|V|^2\Delta(G))$, where w_{sum} is the sum of all edge weights.
- If the edge weights are generated from some positive continuous distribution, the shortest path between
 each pair of nodes will be unique with probability 1. Hence, we can solve the problem in polynomial time.

		Barabási-Albert						
V	100	500	1000	5000	10000			
E	196	996	1996	9996	19996			
$\Delta(G)$	25.27	53.83	76.53	188.20	257.40			
$ \mathcal{SP}(G) /U(G)$	2.13	2.67	2.87	3.34	3.53			
diam	5.57	7.03	7.27	8.53	9.00			
	С	egree cent	trality					
diam centrality	46.17	120.10	179.30	382.57	553.27			
path length	3.87	4.67	5.07	5.80	6.03			
path centrality	51.87	138.33	199.83	483.93	676.47			
MVP runtime	0.08	7.50	58.44	7532.65	-			
Alg. 1 runtime	0.07	2.31	13.46	713.06	3792.77			

- Figures are averages over 30 instances for each size.
- Runtimes are in seconds.
- Row path length gives the length of the optimal shortest path.
- Row path centrality gives the centrality of the optimal shortest path.

	IEEE Bus	Santa Fe	US Air 97	Bus	Email	Cerevisiae		
V	118	118	332	662	1133	1458		
E	179	200	2126	906	5451	1948		
$\Delta(G)$	9	29	139	9	71	56		
$ \mathcal{SP}(G) /U(G)$	2.26	1.51	5.55	2.44	6.73	2.57		
diam	14	12	6	25	8	19		
Degree centrality								
diam centrality	32	90	167	45	159	57		
path length	8	10	3	20	4	7		
path centrality	33	92	206	50	187	156		
MVP runtime	0.26	0.20	3.43	40.58	107.14	246.92		
Alg. 1 runtime	0.09	0.09	2.17	3.88	26.53	22.89		

- Runtimes are in seconds.
- Row path length gives the length of the optimal shortest path.
- Row path centrality gives the centrality of the optimal shortest path.

	Graph 1		Graph 2		Graph 3	
weighted	no	yes	no	yes	no	yes
V	3783	281050	5881	397821	6539	167369
E	24186	301453	35592	427532	51127	211957
$\Delta(G)$	511	511	795	795	805	805
$ \mathcal{SP}(G) /U(G)$	9.50	2.68	10.74	19.18	8.54	1.83
diam	10	107	11	107	11	35
		Degree cer	ntrality			
diam nodes traversed	11	12	12	12	12	7
diam centrality	689	266	971	299	318	846
path length	5	39	4	31	4	11
path nodes traversed	6	9	5	12	5	4
path centrality	865	891	1349	1433	1318	1165
Alg. 1 runtime	1134	20996	4189	58050	1345	24927

- Runtimes are in seconds.
- ullet $|E|=w_{\mathrm{sum}}$ (sum of all edge weights) for weighted graphs.
- Row path length gives the length of the optimal shortest path.
- Row path centrality gives the centrality of the optimal shortest path.

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

Outline

- preliminaries
- 2 main results
- degree centrality
- $oldsymbol{4}$ k-step reach centrality
- **betweenness centrality**
- 6 closeness centrality
- conclusions

k-step reach centrality

- Let d(u,v) denote the distance between u and v (length of the shortest path)
- ullet For unweighted graphs, the k-step reach neighbourhood of path P is

$$\mathcal{N}_k(P) = \{ v : d(u, v) \le k, \ u \in P, \ v \notin P \}.$$

ullet Then, the k-step reach centrality for path P is

$$C_k = |\mathcal{N}_k(P)|$$

28 / 46

Theorem

The most 2-step reach shortest path problem is polynomial.

Proposition

The most k-step reach shortest path problem is polynomial.

Outline

- preliminaries
- 2 main results
- degree centrality
- 4 k-step reach centrality
- **5** betweenness centrality
- 6 closeness centrality
- conclusions

• Classic definition by Everett and Borgatti (1999):

$$C_{\mathsf{btw}}(P) = \sum_{u < v \colon u, v \in V \setminus P} \frac{g_{uv}(P)}{g_{uv}},$$

where $g_{uv}(P)$ is the number of shortest paths between nodes u and v that traverse through **at least one** node in P.

• Alternative definition by Puzis et al. (2007):

$$C_{\mathsf{btw}}(P) = \sum_{u < v \colon u, v \in V \setminus P} \frac{\tilde{g}_{uv}(P)}{\tilde{g}_{uv}},$$

where $\tilde{g}_{uv}(P)$ is the number of shortest paths between nodes u and v that traverse through **all nodes** in P.

• Our definition (aka stress centrality of Shimbel (1953)):

$$C_{\mathsf{btw}}(P) = \sum_{u < v \colon u, v \in V \setminus P} g_{uv}(P).$$

Most betweenness-central shortest path problem

Path betweenness centrality $C_{\text{btw}}(P)$ is the number of shortest paths between all pairs of nodes not on P that traverse through at least one node in P:

$$C_{\mathsf{btw}}(P) = \sum_{u < v : u, v \in V \setminus P} g_{uv}(P),$$

where $g_{uv}(P)$ is the number of shortest paths between u and v that traverse through at least one node in P.

Problem (3)

Given a graph G = (V, E) and measure of centrality C_{btw} , solve the following problem:

$$\max \left\{ C_{\textit{btw}}(P) : P \in \mathcal{SP}(G) \right\}.$$

Theorem

Problem (3) is solvable in $O(|E|^2|V|^2)$ time.

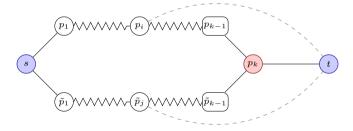
Corollary

Problem (3) on a graph with positively weighted edges is solvable in polynomial time.

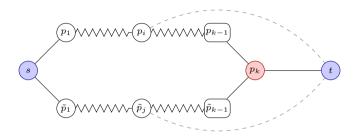
Finding the most betweenness-central shortest path

Lemma (most betweenness-central shortest path)

If $\langle s, p_1, \ldots, p_k, t \rangle$ is a most betweenness-central shortest path from s to t, then $\langle s, p_1, \ldots, p_k \rangle$ is a most betweenness-central shortest path from s to p_k .



Finding the most betweenness-central shortest path



Proof (sketch).

- If $P = \langle s, p_1, \dots, p_k, t \rangle$ is shortest from s to t then $P_{-t} = \langle s, p_1, \dots, p_k \rangle$ is shortest from s to p_k .
- Let P be the most betweenness-central shortest path between s and t and $\tilde{P} = \langle s, \tilde{p}_1, \dots, \tilde{p}_{k-1}, p_k, t \rangle$ be an alternative path.
- Removing t from P updates the betweenness centrality score of P_{-t} by adding paths that end at t and traverse through at least one node in P, and subtracting paths that only traverse through t and none of the nodes in P_{-t} .
- ullet The number of paths subtracted is fixed regardless of whether P or $ilde{P}$ was the most betweenness-central.
- $\bullet \Rightarrow$ for P to be most betweenness-central, P_{-t} must be most betweenness-central between s and p_k .

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

Algorithm 2: Finding the most betweenness-central shortest path

```
Input: Graph G = (V, E), starting vertex s.
Output: Most betweenness-central shortest path P_v from s to v for every v \in V.
 1: for v \in V do
 2. d_{-} \leftarrow +\infty P_{-} \leftarrow \text{undefined}
 3: end for
 4: P_s \leftarrow \langle s \rangle.
 5: Insert (0, s) to the queue Q.
 6: while Q not empty do
        (d_u, u) \leftarrow \mathsf{pop} \mathsf{ next element of } Q.
       for v \in \{v' \in V : (u, v') \in E\} do
        d_{\text{new}} \leftarrow d_{x} + 1.
              if d_{\text{new}} < d_{\text{a}}, then
                   Insert (d_{new}, v) to the gueue Q.
11:
12:
                d_v \leftarrow d_{\text{new}}, P_v = \langle s, v \rangle.
              else if d_{now} = d_{n} then
13:
                   if C_{\text{btw}}(\langle P_u, v \rangle) > C_{\text{btw}}(P_v) then
14:
15:
                        P_v \leftarrow \langle P_u, v \rangle.
                    end if
16:
               end if
17.
          end for
19: end while
```

			1 (1 4 11					
		Barabási-Albert						
V	100	500	1000	5000	10000			
E	196	996	1996	9996	19996			
$\Delta(G)$	25.27	53.83	76.53	188.20	257.40			
$ \mathcal{SP}(G) /U(G)$	2.13	2.67	2.87	3.34	3.53			
diam	5.57	7.03	7.27	8.53	9.00			
Degree centrality								
diam centrality	46.17	120.10	179.30	382.57	553.27			
path length	3.87	4.67	5.07	5.80	6.03			
path centrality	51.87	138.33	199.83	483.93	676.47			
MVP runtime	0.08	7.50	58.44	7532.65	-			
Alg. 1 runtime	0.07	2.31	13.46	713.06	3792.77			
	Betw	eenness centr	ality					
diam centrality	12879.93	346136.47	-	-	-			
path length	4.37	5.37	-	-	-			
path centrality	14788.67	402991.40	-	-	-			
preprocessing time	0.01	0.18	-	-	-			
Alg. 2 runtime	34.66	23966.26	-	-	-			

Table: Results for Barabási-Albert graphs averaged over 30 instances. Runtimes and preprocessing times are in seconds. Rows **path length** and **path centrality** give the length and the centrality of the optimal shortest path, respectively.

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025 35/46

	Watts-Strogatz (4, 0.1)						
V	100	500	1000	5000	10000		
E	200	1000	2000	10000	20000		
$\Delta(G)$	5.87	6.40	6.70	7.27	7.33		
$ \mathcal{SP}(G) /U(G)$	2.45	3.18	3.53	4.37	4.80		
diam	10.43	15.40	17.73	22.33	24.50		
Degree centrality							
diam centrality	22.23	31.20	35.37	42.53	45.20		
path length	9.03	12.97	14.73	18.63	19.37		
path centrality	23.17	33.87	37.60	46.90	50.40		
MVP runtime	0.14	13.24	106.47	15056.90	-		
Alg. 1 runtime	0.07	2.08	10.26	366.88	1712.52		
	Betv	weenness cent	rality				
diam centrality	11823.33	172901.27	-	-	-		
path length	8.27	11.73	-	-	-		
path centrality	13130.13	213512.87	-	-	-		
preprocessing time	0.01	0.18	-	-	-		
Alg. 2 runtime	38.61	28597.39	-	-	-		

Table: Results for Watts-Strogatz graphs with rewiring probability set to 0.1, averaged over 30 instances. Runtimes and preprocessing times are in seconds. Rows **path length** and **path centrality** give the length and the centrality of the optimal shortest path, respectively.

		Watts-Strogatz (4, 0.2)							
V	100	500	1000	5000	10000				
E	200	1000	2000	10000	20000				
$\Delta(G)$	6.60	7.40	7.43	8.03	8.20				
$ \mathcal{SP}(G) /U(G)$	2.04	2.25	2.35	2.57	2.66				
diam	8.43	11.50	12.97	16.13	17.47				
Degree centrality									
diam centrality	21.67	28.80	30.60	37.73	40.17				
path length	7.03	9.33	10.17	12.53	13.27				
path centrality	23.33	31.73	35.17	43.77	47.07				
MVP runtime	0.12	10.54	83.88	-	-				
Alg. 1 runtime	0.06	2.08	9.75	359.95	1704.02				
	Betwe	eenness centra	lity						
diam centrality	7343.40	81079.20	-	-	-				
path length	6.83	8.83	-	-	-				
path centrality	8283.87	100763.80	-	-	-				
preprocessing time	0.01	0.18	-	-	-				
Alg. 2 runtime	36.89	26936.55	-	-	-				

Table: Results for Watts-Strogatz graphs with a rewiring probability of 0.2, averaged over 30 instances. Runtimes and preprocessing times are in seconds. Rows **path length** and **path centrality** give the length and the centrality of the optimal shortest path, respectively.

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025 37/4

Numerical results: real-world instances

	IEEE Bus	Santa Fe	US Air 97	Bus	Email	Cerevisiae		
V	118	118	332	662	1133	1458		
E	179	200	2126	906	5451	1948		
$\Delta(G)$	9	29	139	9	71	56		
$ \mathcal{SP}(G) /U(G)$	2.26	1.51	5.55	2.44	6.73	2.57		
diam	14	12	6	25	8	19		
Degree centrality								
diam centrality	32	90	167	45	159	57		
path length	8	10	3	20	4	7		
path centrality	33	92	206	50	187	156		
MVP runtime	0.26	0.20	3.43	40.58	107.14	246.92		
Alg. 1 runtime	0.09	0.09	2.17	3.88	26.53	22.89		
		Betweenn	ess centrality					
diam centrality	26530	20422	180104	650164	-	-		
path length	13	11	5	18	-	-		
path centrality	26734	20422	254286	705878	-	-		
preprocessing time	0.01	0.01	0.15	0.29	-	-		
Alg. 2 runtime	61.18	47.08	10612.16	76869.96	-	-		

Table: Results for real-world instances. Runtimes and preprocessing times are in seconds. Rows path length and path centrality give the length and the centrality of the optimal shortest path, respectively.

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

		Copenhagen calls						
weighted	no	yes	no	yes				
directed	yes	yes	no	no				
V	536	536	536	536				
E	924	924	621	621				
$\Delta(G)$	18	18	18	18				
$ \widetilde{\mathcal{SP}(G)} /U(G)$	1.43	1.35	1.79	1.50				
diam	21	75	22	197				
E	Betweennes	s centrality						
diam nodes traversed	22	25	23	15				
diam centrality	54084	35826	133280	140648				
path length	9	17	7	32				
path nodes traversed	10	11	8	16				
path centrality	59959	57692	177592	154253				
preprocessing time	0.06	0.11	0.10	0.26				
Alg. 2 runtime	1118.62	1182.93	5320.75	5741.69				

Table: Results for betweenness centrality on Copenhagen Calls graph instances. Runtimes and preprocessing times are in seconds. Rows path length and path centrality give the length and the centrality of the optimal shortest path, respectively.

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

		Copenhagen SMS							
weighted	no	yes	no	yes					
directed	yes	yes	no	no					
V	568	568	568	568					
E	1303	1303	697	697					
$\Delta(G)$	11	11	11	11					
$ \mathcal{SP}(G) /U(G)$	1.99	1.30	2.12	1.32					
diam	22	1783	20	3781					
	Betweenne	ss centrality							
diam nodes traversed	23	10	21	12					
diam centrality	127129	81092	224086	118298					
path length	8	81	8	106					
path nodes traversed	9	16	9	23					
path centrality	228071	156347	280440	159783					
preprocessing time	0.14	0.45	0.15	0.55					
Alg. 2 runtime	12492.22	13737.50	15609.16	17860.28					

Table: Results for betweenness centrality on Copenhagen SMS graph instances. Runtimes and preprocessing times are in seconds. Rows path length and path centrality give the length and the centrality of the optimal shortest path, respectively.

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025

Outline

- preliminaries
- 2 main results
- degree centrality
- 4 k-step reach centrality
- betweenness centrality
- 6 closeness centrality
- conclusions

Most closeness-central shortest path problem

Recall that d(u, v) denotes the distance between nodes u and v.

We overload notation and use d(u, P) for the distance from node u to path P:

$$d(u,P) = \min_{v \in P} \{d(u,v)\}$$

We define **path closeness centrality** for path P as

$$C_{\mathsf{cls}}(P) = \max_{u \in V \setminus P} \{ d(u, P) \}.$$

Problem (4)

Given a graph G = (V, E) and measure of centrality C_{cls} , solve the following problem:

$$\min \left\{ C_{\textit{cls}}(P) : P \in \mathcal{SP}(G) \right\}.$$

Theorem

Problem (4) is NP-hard.

Outline

- preliminaries
- 2 main results
- degree centrality
- 4 k-step reach centrality
- betweenness centrality
- 6 closeness centrality
- conclusions

Concluding remarks

- Finding central shortest paths in networks is an interesting problem.
- The problem is challenging because the number of shortest paths between a pair of nodes can be exponential.
- Computational complexity depends on the measure of centrality and whether the edges are weighted or not:

Centrality measure	Unweighted graph	Weighted graph
Betweenness	Р	Р
Degree	P	NP-hard
k-step reach	P	?
Closeness	NP-hard	NP-hard

- The worst-case runtime for the most degree-central shortest path problem on unweighted graphs is $O(|E||V|^2\Delta(G))$.
- The worst-case runtime for the most betweenness-central shortest path problem is
 - $O(|E|^2|V|^2)$ on unweighted graphs
 - $O(|E|^2|V|^2 + |V|^2 \log(|V|))$ on graphs with positively weighted edges
- Both algorithms are easy to parallelise.

Extensions

- ullet MIP formulations for NP-hard problems + approximation schemes
- Relax the constraint: generalisation to almost shortest path

The end!

Questions? Comments?

Appendix

Undirected graphs

Definition: an undirected graph G consists of a set V of nodes (or vertices) and a set E of edges (or undirected arcs), where an edge is an unordered pair of distinct nodes. We write G = (V, E).

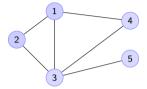


Figure: a graph with $V = \{1, ..., 5\}$ and $E = \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (3, 5)\}.$

assumptions:

- ullet there is at most one edge from node i to node j
- ullet edges (i,j) and (j,i) are one and the same
- there are no loops (no edges (i, i))

Networks

- In scientific literature, the terms network and graph are often used interchangeably
- However, typically **network** is more than just a graph
- ullet Definition: a network is a graph G=(V,E) together with additional node and edge features
 - external supply to each node
 - edge capacity
 - cost per unit of flow along an edge
 - ...

Data sources

Links to large real-life instances:

- https://networks.skewed.de/net/advogato
- https://networks.skewed.de/net/arxiv_collab
- https://networks.skewed.de/net/bitcoin_alpha
- https://networks.skewed.de/net/bitcoin_trust
- https://networks.skewed.de/net/copenhagen

Numerical results: synthetic instances

		Watts-Strogatz (4, 0.1)							
V	100	500	1000	5000	10000				
E	200	1000	2000	10000	20000				
$\Delta(G)$	5.87	6.40	6.70	7.27	7.33				
$ \mathcal{SP}(G) /U(G)$	2.45	3.18	3.53	4.37	4.80				
diam	10.43	15.40	17.73	22.33	24.50				
diam centrality	22.23	31.20	35.37	42.53	45.20				
path length	9.03	12.97	14.73	18.63	19.37				
path centrality	23.17	33.87	37.60	46.90	50.40				
MVP runtime	0.41	59.73	513.84	-	-				
Alg 1 runtime	0.07	2.08	10.26	366.88	1712.52				

		Watts-Strogatz (4, 0.2)						
V	100	500	1000	5000	10000			
E	200	1000	2000	10000	20000			
$\Delta(G)$	6.60	7.40	7.43	8.03	8.20			
$ \mathcal{SP}(G) /U(G)$	2.04	2.25	2.35	2.57	2.66			
diam	8.43	11.50	12.97	16.13	17.47			
diam centrality	21.67	28.80	30.60	37.73	40.17			
path length	7.03	9.33	10.17	12.53	13.27			
path centrality	23.33	31.73	35.17	43.77	47.07			
MVP runtime	0.41	55.73	482.51	-	-			
Alg 1 runtime	0.06	2.08	9.75	359.95	1704.02			

Table: Results for Watts-Strogatz graphs averaged over 30 instances. Runtimes and preprocessing times are in seconds.

Distance-based group centrality measures

Harmonic centrality:

$$C_1(S,G) = \sum_{i \in V \setminus S} \frac{1}{d_G(i,S)}$$

Decay centrality:

$$C_2(S,G) = \sum_{i \in V \setminus S} \delta^{d_G(i,S)},$$

where $0 < \delta < 1$

• k-step reach centrality:

$$C_3(S,G) = \sum_{i \in V \setminus S} \mathbb{1}_{\{d_G(i,S) \le k\}},$$

where $\mathbb{1}_{\{\}}$ denotes an indicator function

Scale-free networks

A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as

$$P(k) \sim k^{-\gamma}$$

where γ is a parameter whose value is typically in the range $2 < \gamma < 3$, although occasionally, it may lie outside these bounds.

- the first moment (location) of $k^{-\gamma}$ is finite
- the second moment (scale parameter) of $k^{-\gamma}$ is infinite, hence the name.

Dmytro Matsypura (USyd) centrality of shortest paths WOMBAT 2025 7

- Everett, M. G. and S. P. Borgatti (1999). The centrality of groups and classes. *The Journal of Mathematical Sociology* 23(3), 181–201.
- Matsypura, D., A. Veremyev, E. L. Pasiliao, and O. A. Prokopyev (2023). Finding the most degree-central walks and paths in a graph: Exact and heuristic approaches. *European Journal of Operational Research 308*(3), 1021–1036.
- Puzis, R., Y. Elovici, and S. Dolev (2007). Fast algorithm for successive computation of group betweenness centrality. *Physical Review. E* 76(5 Pt 2), 056709.
- Shimbel, A. (1953). Structural parameters of communication networks. *The Bulletin of Mathematical Biophysics* 15(4), 501–507.