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Note that T; > 0. lterates of CG are generated in a way that conceptually
amounts to solving this linear system using Cholesky factorization of T;.
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Algorithm Conjugate Gradient
1:rp=dy=—-g,andpg=0
2: for t =1,2,... until ||ri—1]] < 7 do
3: ap = <rt,1, rt,1> / <dt, Hdt>
© Pt =Pr-1+ ardy

4
5: re =re—1 — OétHdt

6: 51&-«—1 = <rt,|’t> / <rt—1; rt—l)
7. dep1 =re + Beade

8: end for

Note: In practice Hd; is computed once and reused in various lines, also
|[r¢]|? = (r¢, r) from each iteration is reused in the next iteration to check
the termination criterion, and also to compute a; and 3 in the next
iteration.
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If V; is the basis from the Lanczos procedure, then we can set p; = V;y:
where y; is the solution to:

y: = argmin [[HV.y + g|
yeR?

=argmin ||V 1Tepr ey + g
yeR?

= argmin||Teo1ey + g ea|.
yeR?

MINRES iterates are generated in a way that conceptually amounts to
solving this least squares using the reduced QR factorization of T;1 ;.
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As a result, from y; = —Rt_lut, we get
Pt = Viy: = —Vth_lut = —D:u;

Tt

= {thl dt} l_Ut_ll = pe—1 + 7ed;

and from V; = D;R; and the fact that only the diagonal, the
super-diagonal, and the second super-diagonal elements of R; can be
non-zero, we get

d; = (Vt —erdi_p — 552)dt—1) /7(2)-
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Algorithm 1 MINRES(H, g, 7)

1: Input: Hessian H, gradient g, and inexactness tolerance 1 > 0

2% ¢o = b1 = |gll, ro = —8, vi =ro/do, Vo =80 = wo =w_1 =0,
3 s0=0,c0=—1,8 =7 =0, t = 1, Dype = ‘SOL’,
4: while True do

5 ar=Hve, G = vidn @ =a — Bivier, a0 = qe — deves Brer = llael|

6 5t2 erpr| _ [ee-1 se—r | [ O
Yo O Si-1 —Ci-1] |0t B

7: if ¢t_17+ > 0 then
8 Diype = ‘NPC’

9 return r;_1, Deype.

10:  end if

11 if g1y /72 + 02 < my/ 03 — ¢7 4 then
12 Digpe = “SOL’

13 return s; 1, Diype

14 end if

- 2] A
15 A = a2+ B,

16 if “.'r[2] #0 then

~ 2 5 2 ,
17 ct ,'t/’)l LSt =Ber1 /v Tt = cedro1, Or = sedio1,

18 Wi = (V: - 'y]wH - f:“’t—z) /",'rm- S¢ = Si—1 + Tt Wy
19 if ~'§r+1 # 0 then

20: Vsl = Gt/Best, Te = s7Te-1 — dreevis,

21 end if

22:  else

23: c=0,80=1,7=0,dt =1, 1t =141, 5t =81,

24:  end if
25t t+1,
26: end while 11/28
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CG VERSUS MINRES: AN EMPIRICAL COMPARISON*

DAVID CHIN-LUNG FONG! AND MICHAEL SAUNDERS?!

Abstract. For iterative solution of symmetric systems Az = b, the conjugate gradient method
(CG) is commonly used when A is positive definite, while the minimum residual method (MINRES)
is typically reserved for indefinite systems. We investigate the sequence of approximate solutions zj,
generated by each method and suggest that even if A is positive definite, MINRES may be preferable
to CG if iterations are to be terminated early. In particular, we show for MINRES that the solution
norms ||z|| are monotonically increasing when A is positive definite (as was already known for CG),
and the solution errors ||z* — x| are monotonically decreasing. We also show that the backward
errors for the MINRES iterates z; are monotonically decreasing.

Key words. conjugate gradient method, minimum residual method, iterative method, sparse
matrix, linear equations, CG, CR, MINRES, Krylov subspace method, trust-region method

1. Introduction. The conjugate gradient method (CG) [11] and the minimum
residual method (MINRES) [18] are both Krylov subspace methods for the iterative
solution of symmetric linear equations Az = b. CG is commonly used when the matrix
A is positive definite, while MINRES is generally reserved for indefinite systems [27,
p85]. We reexamine this wisdom from the point of view of early termination on
positive-definite systems.

We assume that the system Az = b is real with A symmetric positive definite
(spd) and of dimension n x n. The Lanczos process [13] with starting vector b may
be used to generate the n x k matrix Vi = (v1 w2 ... o) and the (k+1) x k

BT - j= =t ie'nt 1 L Je

\iz. 1

2 i AT I

(Fong and Saunders, 2012)
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MINRES terminates faster!

ren - 1
- - \
-7 S N \\ 8
o
sl I
-9 I ! 1 I I .
0 0.5 1 15 2 25 3 35
iteration count x10°

(Fong and Saunders, 2012)
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So, using properties of Chebyshev polynomials, we get
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Lemma (Liu and Roosta, 2022a)

Let
A

H=[U UL U, AL U UL u,".
0
For any 0 < 6 < 1, after at most
t > 0.25y/max{x*, n~} log (4/6),
iterations of MINRES, we have
IULUTgl” < [Ire]* < U.UTgl* + 6 |UUTg|?,

and in particular, ) )
[UUTr " < 6 |UUTg|".

Available general convergence results for indefinite problems imply rates depending
on k* and k™ as opposed to VT and VK.
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One of the nice properties of CG is that it allows for ready access to NPC
direction:

CG

’

min ,8)+(p,H ‘;2
B (p.g) \\(p p>//

| CG’s NPC Condition]|
(d¢,Hd;) <0

The NPC condition can be checked almost for free in CG since we always
compute (d¢, Hd;) in every iteration to find CG's step size a;.
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v={[ro|ri|...]|re_1]c for some 0 # c € R. We have

t
(v, Hv) = Z c2 (rj,Hr;) > 0.
i=1
In other words, as long as (r;, Hr;) >0, for all 0 </ <t —1, we have
(v, Hv) > 0 for any 0 # v € Kt(H, g). Conversely, (r;—1,Hr;_1) <0, then
(v,Hv) > 0 for some 0 # v € K¢(H,g), namely v =r;_;.
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1st-order descent
(NPC)

(dr,8) = —[Irel* < 0

(re—1,8) = — |[re—1]? < 0

1st-order
non-ascent for ||g||

(NPC)

2
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(re—1,Hg) =0
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MINRES is a much more general purpose than CG, and hence it is a more
complicated. It turns out there is a much simpler alternative algorithm that
for all intents and purposes as an optimization sub-problem solver is
“identical” to MINRES. Recall CG iterations are formed by solving:

1
pe = argmin — (p,Hp) + (p.g) .
pek:

If H > 0, we have we can replace the Euclidean inner product by an
H-inner product and get

1 o1
pe = argmin — (p,Hp)y + (p,g)y = argmin = [Hp +g|*.
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Algorithm Conjugate Residual®
1 rozdlz—g, and p():O
2: for t =1,2,... until |re_1|| < 7 do
3: oy = <I‘t_1, rf—1>H / <dt, Hdt>H
4 Pt = Pt—1 + ad;
5 ry =rq_1 — oa;Hd;
6: Bry1 = <|’t,rt>|.| /(re-1, rt—1>|.|
7
8

o dep1r =1+ Beyade
: end for

CR can be implemented to have one matrix-vector product per iteration, in which case it requires one more vector of

storage and one more vector update than the CG.
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Algorithm Conjugate Residual®
1 rozdlz—g, and p0:0
2: for t =1,2,... until |re_1|| < 7 do
3 o= (re_1,Hre 1) /||Hd |
4 Pt = Pt—1 + ad;
5 ry =rq_1 — a;Hd;
6:  Ber1 = (re, Hre) / (re—1,Hre 1)
7.
8

o dep1r =1+ Beyade
: end for

MINRES is also simple!

Theorem (Lim, Liu, and Roosta, 2024)

MINRES and CR are essentially the same for all H (not just PD)!

CR can be implemented to have one matrix-vector product per iteration, in which case it requires one more vector of
storage and one more vector update than the CG.
25/28



Part II: Open the Box
0000000000000000000000000e00

CG MINRES/CR
Simplicity v X
Coverage in Textbook v X
Software Libraries v X
Theoretical Properties v v
Numerical Properties v X

26/28



Part II: Open the Box
0000000000000000000000000e00

CG MINRES/CR
Simplicity v v
Coverage in Textbook v X
Software Libraries v X
Theoretical Properties v v
Numerical Properties v X

26/28



Part II: Open the Box

0000000000000 O000O000O0O000000e0

CG is unstable!

Conjugate Gradient Conjugate Residual Minimal Residual
10°
=== [1Ap/l/l|AbI| s -
105 IAr]|/]|Ab]| 10-1 101
050 ] — lInell/ibll
104 1073 10-3
100
108 10-% 10-3
101
108 10-7 1A |/]|Ab]| 107 I|Ar/||Ab|
— lirdilll — lirdiiell
o 200 400 600 800 o 25 50 75 100 125 150 o 25 50 75 100 125 150
iteration k iteration k iteration k
Conjugate Gradient Conjugate Residual Minimal Residual
10% —— Jlb—Axe—rill 10% - lIb—Axc—r| 0% - - Axe—rdl
104 [[diag{ <P, APy > } = PLAP|| - 109 Ildiag{ <re, Ar, >} ~ R{AR|| 10 lidiag{ < ri, Are >} ~ RIAR||
102] — II—RIRdI 100 — llle= (APOTAPY| 10 — Ik~ (AD)"AD]|
102 102 102
1007 1017 107
10° 10° 10°
101 — 10t 100
1077 1077 1077
10-15 10-15 10-15 L pmmm T
o 200 400 600 800 o 25 50 75 100 125 150 o 20 a0 60 80 100 120 140
iteration k iteration k iteration k

CG CR MINRES

(Lim, Liu, and Roosta, 2024)
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CG is unstable and/or its solutions can be useless!

Minimal Residual

Conjugate Residual
10 Jug: 10
Ar]l/]|ABI| l1Ar/]|AB]|
o o
10 — linliibl| 10 — lirdiAbl|
1071 107
1072 1072
1073 1073
- - -
107 - |lapdyliAbl| 10 10
1031 = lIArdIIAB] 10-5 105
— lIrcllbil
107° 107° 107°
o 50 100 150 200 250 300 o 5 10 15 20 25 30 o 5 10 15 20 25 30
iteration k iteration k

iteration k

CG CR MR

(Lim, Liu, and Roosta, 2024)
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CG Has No Intuitive Termination Condition

[Hr| <7

Theorem (Lim, Liu, and Roosta, 2024)

With CG, when g & Range(H), p # — Hig + (I — HTH)q, for any q € R¢.

With MINRES, always, p = — Hig + (I — H'H)q, for some q € RY. J
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