Newton-Type Methods

Exploring the Interplay Between Inner and Outer Iterations

Part II

Fred Roosta

School of Mathematics and Physics University of Queensland

	${ m Hp}pprox -{ m g}$	
	CG	MINRES
Sub-problems		
Problem class		
Metric / Rate		

	$Hppprox -\mathbf{g}$	
	CG	MINRES
Sub-problems	$\mathbf{p}_t = \mathop{\mathrm{argmin}}\limits_{\mathbf{p}\in\mathcal{K}_t} \; rac{1}{2} \left< \mathbf{p}, \mathbf{H}\mathbf{p} \right> - \left< \mathbf{p}, \mathbf{g} \right>$	$\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t}{\arg\min} \ \ \mathbf{H}\mathbf{p} + \mathbf{g}\ ^2$
Problem class		
Metric / Rate		

$$\mathcal{K}_t(\mathbf{H}, \mathbf{g}) = \mathsf{Span}\{\mathbf{g}, \mathbf{H}\mathbf{g}, \dots, \mathbf{H}^{t-1}\mathbf{g}\}$$

	${ m Hp}pprox -{ m g}$	
	CG	MINRES
Sub-problems	$\mathbf{p}_t = \mathop{\mathrm{argmin}}\limits_{\mathbf{p}\in\mathcal{K}_t} \; rac{1}{2} \left< \mathbf{p}, \mathbf{H}\mathbf{p} \right> - \left< \mathbf{p}, \mathbf{g} \right>$	$\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t}{\arg\min} \ \ \mathbf{H}\mathbf{p} + \mathbf{g}\ ^2$
Problem class	Positive Definite	Symmetric
Metric / Rate		

$$\mathcal{K}_t(\mathbf{H}, \mathbf{g}) = \mathsf{Span}\{\mathbf{g}, \mathbf{H}\mathbf{g}, \dots, \mathbf{H}^{t-1}\mathbf{g}\}$$

	${ m Hp}pprox -{ m g}$	
	CG	MINRES
Sub-problems	$\mathbf{p}_t = \mathop{\mathrm{argmin}}\limits_{\mathbf{p}\in\mathcal{K}_t} \; rac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> - \left< \mathbf{p}, \mathbf{g} \right>$	$\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t}{\operatorname{arg min}} \ \mathbf{H}\mathbf{p} + \mathbf{g}\ ^2$
Problem class	Positive Definite	Symmetric
Metric / Rate	$\ \mathbf{H}\mathbf{p}_t + \mathbf{g}\ $: R-linear	$\ \mathbf{H}\mathbf{p}_t + \mathbf{g}\ $: Q-linear

$$\mathcal{K}_t(\mathbf{H}, \mathbf{g}) = \mathsf{Span}\{\mathbf{g}, \mathbf{H}\mathbf{g}, \dots, \mathbf{H}^{t-1}\mathbf{g}\}$$

	${ m Hp}pprox -{ m g}$	
	CG	MINRES
Sub-problems	$\mathbf{p}_t = \mathop{\mathrm{argmin}}_{\mathbf{p}\in\mathcal{K}_t} \; rac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> - \left< \mathbf{p}, \mathbf{g} \right>$	$\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t}{\operatorname{argmin}} \ \mathbf{H}\mathbf{p} + \mathbf{g}\ ^2$
Problem class	Positive Definite	Symmetric
Metric / Rate	$\ \mathbf{H}\mathbf{p}_t + \mathbf{g}\ $: R-linear $\ \mathbf{p}_t - \mathbf{p}^{\star}\ _{\mathbf{H}}$: Q-Linear	$\ \mathbf{H}\mathbf{p}_t + \mathbf{g}\ $: Q-linear $\ \mathbf{p}_t - \mathbf{p}^{\star}\ _{H}$: R-Linear (PD)

$$\mathcal{K}_t(\mathbf{H}, \mathbf{g}) = \mathsf{Span}\{\mathbf{g}, \mathbf{H}\mathbf{g}, \dots, \mathbf{H}^{t-1}\mathbf{g}\}$$

For simplicity, assume $\mathbf{p}_0 = \mathbf{0}$. Most, but not all, of what follows can be generalized to arbitrary initialization.

Projection Methods

• Search Subspace: \mathcal{K}_t with dim $(\mathcal{K}_t) = t$

Projection Methods

- Search Subspace: \mathcal{K}_t with dim $(\mathcal{K}_t) = t$
- Constraint Subspace: W_t with dim $(W_t) = t$

Projection Methods

- Search Subspace: \mathcal{K}_t with dim $(\mathcal{K}_t) = t$
- Constraint Subspace: W_t with dim $(W_t) = t$
- Petrov-Galerkin Conditions: Find $p_t \in \mathcal{K}_t$ s.t. $r_t \perp \mathcal{W}_t$

Projection Methods

- Search Subspace: \mathcal{K}_t with dim $(\mathcal{K}_t) = t$
- Constraint Subspace: W_t with dim $(W_t) = t$
- Petrov-Galerkin Conditions: Find $p_t \in \mathcal{K}_t$ s.t. $r_t \perp \mathcal{W}_t$

• Orthogonal Projection: $\mathcal{W}_t = \mathcal{K}_t$

Projection Methods

- Search Subspace: \mathcal{K}_t with dim $(\mathcal{K}_t) = t$
- Constraint Subspace: W_t with dim $(W_t) = t$
- Petrov-Galerkin Conditions: Find $p_t \in \mathcal{K}_t$ s.t. $r_t \perp \mathcal{W}_t$

- Orthogonal Projection: $\mathcal{W}_t = \mathcal{K}_t$
- Oblique Projection: $W_t \neq K_t$, e.g., $W_t = \mathbf{H} \mathcal{K}_t$

1 The case where $\mathbf{H} \succ \mathbf{0}$ and $\mathcal{W}_t = \mathcal{K}_t$ is equivalent to

1 The case where $\mathbf{H} \succ \mathbf{0}$ and $\mathcal{W}_t = \mathcal{K}_t$ is equivalent to

$$\mathbf{p}_t = \arg\min_{\mathbf{p}\in\mathcal{K}_t} \|\mathbf{p} - \mathbf{p}^\star\|_{\mathbf{H}}^2$$

• The case where $\mathbf{H} \succ \mathbf{0}$ and $\mathcal{W}_t = \mathcal{K}_t$ is equivalent to

$$\mathbf{p}_{t} = \operatorname*{arg\,min}_{\mathbf{p}\in\mathcal{K}_{t}} \|\mathbf{p} - \mathbf{p}^{\star}\|_{\mathbf{H}}^{2} = \operatorname*{arg\,min}_{\mathbf{p}\in\mathcal{K}_{t}} \frac{1}{2} \langle \mathbf{p}, \mathbf{H}\mathbf{p} \rangle + \langle \mathbf{g}, \mathbf{p} \rangle.$$

1 The case where $\mathbf{H} \succ \mathbf{0}$ and $\mathcal{W}_t = \mathcal{K}_t$ is equivalent to

$$\mathbf{p}_t = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_t} \|\mathbf{p} - \mathbf{p}^\star\|_{\mathbf{H}}^2 = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_t} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>.$$

2 The case where det(\mathbf{H}) \neq 0 and $\mathcal{W}_t = \mathbf{H}\mathcal{K}_t$ is equivalent to

1 The case where $\mathbf{H} \succ \mathbf{0}$ and $\mathcal{W}_t = \mathcal{K}_t$ is equivalent to

$$\mathbf{p}_{t} = \operatorname*{arg\,min}_{\mathbf{p}\in\mathcal{K}_{t}} \|\mathbf{p} - \mathbf{p}^{\star}\|_{\mathbf{H}}^{2} = \operatorname*{arg\,min}_{\mathbf{p}\in\mathcal{K}_{t}} \frac{1}{2} \langle \mathbf{p}, \mathbf{H}\mathbf{p} \rangle + \langle \mathbf{g}, \mathbf{p} \rangle.$$

2 The case where det(\mathbf{H}) \neq 0 and $\mathcal{W}_t = \mathbf{H}\mathcal{K}_t$ is equivalent to

$$\mathbf{p}_t = \arg\min_{\mathbf{p}\in\mathcal{K}_t} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|^2$$

9 Let
$$\mathbf{V}_t \in \mathbb{R}^{d imes t}$$
 be such that $\mathsf{Range}(\mathbf{V}_t) = \mathcal{K}_t$.

1 Let $\mathbf{V}_t \in \mathbb{R}^{d \times t}$ be such that $\mathsf{Range}(\mathbf{V}_t) = \mathcal{K}_t$. To solve

$$\mathbf{p}_{t} = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_{t}} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>,$$

() Let $\mathbf{V}_t \in \mathbb{R}^{d imes t}$ be such that $\mathsf{Range}(\mathbf{V}_t) = \mathcal{K}_t$. To solve

$$\mathbf{p}_{t} = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_{t}} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>,$$

we can equivalently solve

$$egin{aligned} \mathbf{y}_t = rgmin_{\mathbf{y} \in \mathbb{R}^t} rac{1}{2} \left< \mathbf{V}_t \mathbf{y}, \mathbf{H}\left(\mathbf{V}_t \mathbf{y}
ight> + \left< \mathbf{g}, \mathbf{V}_t \mathbf{y}
ight> \end{aligned}$$

and then set $\mathbf{p}_t = \mathbf{V}_t \mathbf{y}_t$.

() Let $\mathbf{V}_t \in \mathbb{R}^{d imes t}$ be such that $\mathsf{Range}(\mathbf{V}_t) = \mathcal{K}_t$. To solve

$$\mathbf{p}_{t} = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_{t}} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>,$$

we can equivalently solve

$$oldsymbol{y}_t = rgmin_{oldsymbol{y} \in \mathbb{R}^t} rac{1}{2} \left< oldsymbol{V}_t oldsymbol{y}, oldsymbol{H}\left(oldsymbol{V}_t oldsymbol{y}
ight) + \left< oldsymbol{g}, oldsymbol{V}_t oldsymbol{y}
ight>$$

and then set $\mathbf{p}_t = \mathbf{V}_t \mathbf{y}_t$. Since $\mathbf{H} \succ \mathbf{0}$

() Let $\mathbf{V}_t \in \mathbb{R}^{d imes t}$ be such that $\mathsf{Range}(\mathbf{V}_t) = \mathcal{K}_t$. To solve

$$\mathbf{p}_{t} = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_{t}} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>,$$

we can equivalently solve

$$oldsymbol{y}_t = rgmin_{oldsymbol{y} \in \mathbb{R}^t} rac{1}{2} \left< oldsymbol{V}_t oldsymbol{y}, oldsymbol{H}\left(oldsymbol{V}_t oldsymbol{y}
ight)
ight> + \left< oldsymbol{g}, oldsymbol{V}_t oldsymbol{y}
ight>$$

$$\mathbf{V}_t^{\mathsf{T}} \mathbf{H} \mathbf{V}_t \mathbf{y}_t + \mathbf{V}_t^{\mathsf{T}} \mathbf{g} = \mathbf{0}$$

() Let $\mathbf{V}_t \in \mathbb{R}^{d imes t}$ be such that $\mathsf{Range}(\mathbf{V}_t) = \mathcal{K}_t$. To solve

$$\mathbf{p}_{t} = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_{t}} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>,$$

we can equivalently solve

$$oldsymbol{y}_t = rgmin_{oldsymbol{y} \in \mathbb{R}^t} rac{1}{2} \left< oldsymbol{V}_t oldsymbol{y}, oldsymbol{H}\left(oldsymbol{V}_t oldsymbol{y}
ight)
ight> + \left< oldsymbol{g}, oldsymbol{V}_t oldsymbol{y}
ight>$$

$$\mathbf{V}_t^{\mathsf{T}}\mathbf{H}\mathbf{V}_t\mathbf{y}_t + \mathbf{V}_t^{\mathsf{T}}\mathbf{g} = \mathbf{0} \iff \mathbf{V}_t^{\mathsf{T}} (\mathbf{H}\mathbf{p}_t + \mathbf{g}) = \mathbf{0}$$

() Let $\mathbf{V}_t \in \mathbb{R}^{d imes t}$ be such that $\mathsf{Range}(\mathbf{V}_t) = \mathcal{K}_t$. To solve

$$\mathbf{p}_{t} = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_{t}} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>,$$

we can equivalently solve

$$oldsymbol{y}_t = rgmin_{oldsymbol{y} \in \mathbb{R}^t} rac{1}{2} \left< oldsymbol{V}_t oldsymbol{y}, oldsymbol{H}\left(oldsymbol{V}_t oldsymbol{y}
ight)
ight> + \left< oldsymbol{g}, oldsymbol{V}_t oldsymbol{y}
ight>$$

$$\mathbf{V}_t^{\mathsf{T}}\mathbf{H}\mathbf{V}_t\mathbf{y}_t + \mathbf{V}_t^{\mathsf{T}}\mathbf{g} = \mathbf{0} \iff \mathbf{V}_t^{\mathsf{T}} (\mathbf{H}\mathbf{p}_t + \mathbf{g}) = \mathbf{0}$$

() Let $\mathbf{V}_t \in \mathbb{R}^{d imes t}$ be such that $\mathsf{Range}(\mathbf{V}_t) = \mathcal{K}_t$. To solve

$$\mathbf{p}_{t} = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_{t}} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>,$$

we can equivalently solve

$$oldsymbol{y}_t = rgmin_{oldsymbol{y} \in \mathbb{R}^t} rac{1}{2} \left< oldsymbol{V}_t oldsymbol{y}, oldsymbol{H}\left(oldsymbol{V}_t oldsymbol{y}
ight)
ight> + \left< oldsymbol{g}, oldsymbol{V}_t oldsymbol{y}
ight>$$

$$\mathbf{V}_t^{\mathsf{T}}\mathbf{H}\mathbf{V}_t\mathbf{y}_t + \mathbf{V}_t^{\mathsf{T}}\mathbf{g} = \mathbf{0} \iff \mathbf{V}_t^{\mathsf{T}}\underbrace{(\mathbf{H}\mathbf{p}_t + \mathbf{g})}_{\mathbf{r}_t} = \mathbf{0}$$

() Let $\mathbf{V}_t \in \mathbb{R}^{d imes t}$ be such that $\mathsf{Range}(\mathbf{V}_t) = \mathcal{K}_t$. To solve

$$\mathbf{p}_{t} = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_{t}} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>,$$

we can equivalently solve

$$oldsymbol{y}_t = rgmin_{oldsymbol{y} \in \mathbb{R}^t} rac{1}{2} \left< oldsymbol{V}_t oldsymbol{y}, oldsymbol{H}\left(oldsymbol{V}_t oldsymbol{y}
ight)
ight> + \left< oldsymbol{g}, oldsymbol{V}_t oldsymbol{y}
ight>$$

$$\mathbf{V}_t^{\mathsf{T}}\mathbf{H}\mathbf{V}_t\mathbf{y}_t + \mathbf{V}_t^{\mathsf{T}}\mathbf{g} = \mathbf{0} \iff \mathbf{V}_t^{\mathsf{T}}\underbrace{(\mathbf{H}\mathbf{p}_t + \mathbf{g})}_{\mathbf{r}_t} = \mathbf{0} \iff \mathbf{r}_t \perp \mathcal{K}_t.$$

() Let $\mathbf{V}_t \in \mathbb{R}^{d imes t}$ be such that $\mathsf{Range}(\mathbf{V}_t) = \mathcal{K}_t$. To solve

$$\mathbf{p}_{t} = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_{t}} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>,$$

we can equivalently solve

$$oldsymbol{y}_t = rgmin_{oldsymbol{y} \in \mathbb{R}^t} rac{1}{2} \left< oldsymbol{V}_t oldsymbol{y}, oldsymbol{H}\left(oldsymbol{V}_t oldsymbol{y}
ight)
ight> + \left< oldsymbol{g}, oldsymbol{V}_t oldsymbol{y}
ight> +$$

and then set $\mathbf{p}_t = \mathbf{V}_t \mathbf{y}_t$. Since $\mathbf{H} \succ \mathbf{0}$, it is necessary and sufficient for the optimal \mathbf{y}_t to satisfy

$$\mathbf{V}_t^{\mathsf{T}}\mathbf{H}\mathbf{V}_t\mathbf{y}_t + \mathbf{V}_t^{\mathsf{T}}\mathbf{g} = \mathbf{0} \iff \mathbf{V}_t^{\mathsf{T}}\underbrace{(\mathbf{H}\mathbf{p}_t + \mathbf{g})}_{\mathbf{r}_t} = \mathbf{0} \iff \mathbf{r}_t \perp \mathcal{K}_t.$$

Similarly as above.

Lanczos Process: When **H** is symmetric, the Lanczos process finds a basis V_t for $\mathcal{K}_t(\mathbf{H}, \mathbf{g})$, based on Gram-Schmidt procedure, such that

 $\mathbf{HV}_t = \mathbf{V}_{t+1} \mathbf{T}_{t+1,t},$

Lanczos Process: When **H** is symmetric, the Lanczos process finds a basis V_t for $\mathcal{K}_t(\mathbf{H}, \mathbf{g})$, based on Gram-Schmidt procedure, such that

$$\mathbf{HV}_t = \mathbf{V}_{t+1}\mathbf{T}_{t+1,t},$$

where

$$\mathbf{V}_t = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_t \end{bmatrix}, \quad \text{with} \quad \mathbf{v}_1 = \frac{\mathbf{g}}{\|\mathbf{g}\|},$$

$$\mathbf{T}_{t+1,t} = \begin{bmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \beta_3 \\ & \beta_3 & \alpha_3 & \ddots \\ & \ddots & \ddots & \beta_t \\ & & & \beta_t & \alpha_t \\ & & & & & \beta_{t+1} \end{bmatrix} \triangleq \begin{bmatrix} \mathbf{T}_t \\ \beta_{t+1} \mathbf{e}_t^\mathsf{T} \end{bmatrix}.$$

Lanczos Process: When **H** is symmetric, the Lanczos process finds a basis V_t for $\mathcal{K}_t(\mathbf{H}, \mathbf{g})$, based on Gram-Schmidt procedure, such that

$$\mathsf{HV}_t = \mathsf{V}_{t+1}\mathsf{T}_{t+1,t},$$

where

$$\mathbf{V}_{t} = \begin{bmatrix} \mathbf{v}_{1} \mid \mathbf{v}_{2} \mid \dots \mid \mathbf{v}_{t} \end{bmatrix}, \text{ with } \mathbf{v}_{1} = \frac{\mathbf{g}}{\|\mathbf{g}\|},$$
$$\mathbf{\Gamma}_{t+1,t} = \begin{bmatrix} \alpha_{1} & \beta_{2} & & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & & \\ \beta_{3} & \alpha_{3} & \ddots & & \\ & & \ddots & \ddots & \beta_{t} \\ & & & & \beta_{t} & \alpha_{t} \\ & & & & & \beta_{t+1} \end{bmatrix}} \triangleq \begin{bmatrix} \mathbf{T}_{t} \\ \beta_{t+1} \mathbf{e}_{t}^{\mathsf{T}} \end{bmatrix}.$$

So, $\mathbf{V}_t^{\mathsf{T}} \mathbf{H} \mathbf{V}_t = \mathbf{T}_t$ in tridiagonal.

$$\mathbf{p}_t = \operatorname*{arg\,min}_{\mathbf{p}\in\mathcal{K}_t} rac{1}{2} \left< \mathbf{p}, \mathbf{H}\mathbf{p}
ight> + \left< \mathbf{g}, \mathbf{p}
ight>$$

$$\mathbf{p}_t = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_t} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>$$

If V_t is the basis from the Lanczos procedure, then we can set $\mathbf{p}_t = V_t \mathbf{y}_t$ where \mathbf{y}_t is the solution to:

$$\mathbf{p}_t = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_t} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>$$

If V_t is the basis from the Lanczos procedure, then we can set $\mathbf{p}_t = V_t \mathbf{y}_t$ where \mathbf{y}_t is the solution to:

$$\mathbf{y}_t = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^t} rac{1}{2} \left< \mathbf{V}_t \mathbf{y}, \mathbf{H} \mathbf{V}_t \mathbf{y} \right> + \left< \mathbf{g}, \mathbf{V}_t \mathbf{y} \right>$$

$$\mathbf{p}_t = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_t} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>$$

If V_t is the basis from the Lanczos procedure, then we can set $\mathbf{p}_t = V_t \mathbf{y}_t$ where \mathbf{y}_t is the solution to:

$$\begin{split} \mathbf{y}_t &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^t} \frac{1}{2} \left\langle \mathbf{V}_t \mathbf{y}, \mathbf{H} \mathbf{V}_t \mathbf{y} \right\rangle + \left\langle \mathbf{g}, \mathbf{V}_t \mathbf{y} \right\rangle \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^t} \frac{1}{2} \left\langle \mathbf{y}, \mathbf{T}_t \mathbf{y} \right\rangle + \left\langle \|\mathbf{g}\| \, \mathbf{e}_1, \mathbf{y} \right\rangle. \end{split}$$
$$\mathbf{p}_t = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_t} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>$$

If V_t is the basis from the Lanczos procedure, then we can set $\mathbf{p}_t = V_t \mathbf{y}_t$ where \mathbf{y}_t is the solution to:

$$\begin{split} \mathbf{y}_t &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^t} \frac{1}{2} \left\langle \mathbf{V}_t \mathbf{y}, \mathbf{H} \mathbf{V}_t \mathbf{y} \right\rangle + \left\langle \mathbf{g}, \mathbf{V}_t \mathbf{y} \right\rangle \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^t} \frac{1}{2} \left\langle \mathbf{y}, \mathbf{T}_t \mathbf{y} \right\rangle + \left\langle \|\mathbf{g}\| \, \mathbf{e}_1, \mathbf{y} \right\rangle. \end{split}$$

Taking the derivative and setting it to zero, gives

$$\mathbf{p}_t = \operatorname*{arg\,min}_{\mathbf{p} \in \mathcal{K}_t} \frac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>$$

If V_t is the basis from the Lanczos procedure, then we can set $\mathbf{p}_t = V_t \mathbf{y}_t$ where \mathbf{y}_t is the solution to:

$$\begin{split} \mathbf{y}_t &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^t} \frac{1}{2} \left\langle \mathbf{V}_t \mathbf{y}, \mathbf{H} \mathbf{V}_t \mathbf{y} \right\rangle + \left\langle \mathbf{g}, \mathbf{V}_t \mathbf{y} \right\rangle \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^t} \frac{1}{2} \left\langle \mathbf{y}, \mathbf{T}_t \mathbf{y} \right\rangle + \left\langle \|\mathbf{g}\| \, \mathbf{e}_1, \mathbf{y} \right\rangle. \end{split}$$

Taking the derivative and setting it to zero, gives

$$\mathbf{T}_t \mathbf{y}_t = -\|\mathbf{g}\| \, \mathbf{e}_1.$$

$$\mathbf{p}_t = \operatorname*{arg\,min}_{\mathbf{p}\in\mathcal{K}_t} rac{1}{2} \left< \mathbf{p}, \mathbf{H}\mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>$$

If V_t is the basis from the Lanczos procedure, then we can set $\mathbf{p}_t = V_t \mathbf{y}_t$ where \mathbf{y}_t is the solution to:

$$\begin{split} \mathbf{y}_t &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^t} \frac{1}{2} \left\langle \mathbf{V}_t \mathbf{y}, \mathbf{H} \mathbf{V}_t \mathbf{y} \right\rangle + \left\langle \mathbf{g}, \mathbf{V}_t \mathbf{y} \right\rangle \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^t} \frac{1}{2} \left\langle \mathbf{y}, \mathbf{T}_t \mathbf{y} \right\rangle + \left\langle \|\mathbf{g}\| \, \mathbf{e}_1, \mathbf{y} \right\rangle. \end{split}$$

Taking the derivative and setting it to zero, gives

$$\mathbf{T}_t \mathbf{y}_t = -\|\mathbf{g}\| \, \mathbf{e}_1.$$

Note that $\mathbf{T}_t \succ \mathbf{0}$.

$$\mathbf{p}_t = \operatorname*{arg\,min}_{\mathbf{p}\in\mathcal{K}_t} rac{1}{2} \left< \mathbf{p}, \mathbf{H}\mathbf{p} \right> + \left< \mathbf{g}, \mathbf{p} \right>$$

If V_t is the basis from the Lanczos procedure, then we can set $\mathbf{p}_t = V_t \mathbf{y}_t$ where \mathbf{y}_t is the solution to:

$$\begin{split} \mathbf{y}_t &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^t} \frac{1}{2} \left\langle \mathbf{V}_t \mathbf{y}, \mathbf{H} \mathbf{V}_t \mathbf{y} \right\rangle + \left\langle \mathbf{g}, \mathbf{V}_t \mathbf{y} \right\rangle \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^t} \frac{1}{2} \left\langle \mathbf{y}, \mathbf{T}_t \mathbf{y} \right\rangle + \left\langle \|\mathbf{g}\| \, \mathbf{e}_1, \mathbf{y} \right\rangle. \end{split}$$

Taking the derivative and setting it to zero, gives

$$\mathbf{T}_t \mathbf{y}_t = -\|\mathbf{g}\| \, \mathbf{e}_1.$$

Note that $\mathbf{T}_t \succ \mathbf{0}$. Iterates of CG are generated in a way that conceptually amounts to solving this linear system using Cholesky factorization of \mathbf{T}_t .

Algorithm Conjugate Gradient1: $\mathbf{r}_0 = \mathbf{d}_1 = -\mathbf{g}$, and $\mathbf{p}_0 = \mathbf{0}$ 2: for $t = 1, 2, \dots$ until $\|\mathbf{r}_{t-1}\| \le \tau$ do3: $\alpha_t = \langle \mathbf{r}_{t-1}, \mathbf{r}_{t-1} \rangle / \langle \mathbf{d}_t, \mathbf{H} \mathbf{d}_t \rangle$ 4: $\mathbf{p}_t = \mathbf{p}_{t-1} + \alpha_t \mathbf{d}_t$ 5: $\mathbf{r}_t = \mathbf{r}_{t-1} - \alpha_t \mathbf{H} \mathbf{d}_t$ 6: $\beta_{t+1} = \langle \mathbf{r}_t, \mathbf{r}_t \rangle / \langle \mathbf{r}_{t-1}, \mathbf{r}_{t-1} \rangle$ 7: $\mathbf{d}_{t+1} = \mathbf{r}_t + \beta_{t+1} \mathbf{d}_t$ 8: end for

Note: In practice \mathbf{Hd}_t is computed once and reused in various lines, also $\|\mathbf{r}_t\|^2 = \langle \mathbf{r}_t, \mathbf{r}_t \rangle$ from each iteration is reused in the next iteration to check the termination criterion, and also to compute α_t and β_k in the next iteration.

$$\mathbf{p}_t = \argmin_{\mathbf{p} \in \mathcal{K}_t} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|$$

$$\mathbf{p}_t = \argmin_{\mathbf{p} \in \mathcal{K}_t} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|$$

$$\mathbf{p}_t = rgmin_{\mathbf{p}\in\mathcal{K}_t} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|$$

$$\mathbf{y}_t = rgmin_{\mathbf{y} \in \mathbb{R}^t} \|\mathbf{H} \mathbf{V}_t \mathbf{y} + \mathbf{g}\|$$

$$\mathbf{p}_t = rgmin_{\mathbf{p}\in\mathcal{K}_t} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|$$

$$egin{aligned} \mathbf{y}_t &= rg\min_{\mathbf{y}\in\mathbb{R}^t} \|\mathbf{H}\mathbf{V}_t\mathbf{y}+\mathbf{g}\| \ &=rg\min_{\mathbf{y}\in\mathbb{R}^t} \|\mathbf{V}_{t+1}\mathbf{T}_{t+1,t}\mathbf{y}+\mathbf{g}\| \end{aligned}$$

$$\mathbf{p}_t = rgmin_{\mathbf{p}\in\mathcal{K}_t} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|$$

$$\begin{aligned} \mathbf{y}_{t} &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \| \mathbf{H} \mathbf{V}_{t} \mathbf{y} + \mathbf{g} \| \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \| \mathbf{V}_{t+1} \mathbf{T}_{t+1,t} \mathbf{y} + \mathbf{g} \| \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \| \mathbf{T}_{t+1,t} \mathbf{y} + \| \mathbf{g} \| \, \mathbf{e}_{1} \|. \end{aligned}$$

$$\mathbf{p}_t = rgmin_{\mathbf{p}\in\mathcal{K}_t} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|$$

If V_t is the basis from the Lanczos procedure, then we can set $\mathbf{p}_t = V_t \mathbf{y}_t$ where \mathbf{y}_t is the solution to:

$$\begin{aligned} \mathbf{y}_{t} &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \| \mathbf{H} \mathbf{V}_{t} \mathbf{y} + \mathbf{g} \| \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \| \mathbf{V}_{t+1} \mathbf{T}_{t+1,t} \mathbf{y} + \mathbf{g} \| \\ &= \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \| \mathbf{T}_{t+1,t} \mathbf{y} + \| \mathbf{g} \| \, \mathbf{e}_{1} \|. \end{aligned}$$

MINRES iterates are generated in a way that conceptually amounts to solving this least squares using the reduced QR factorization of $T_{t+1,t}$.

Letting
$$\mathbf{Q}_{t+1}\mathbf{T}_{t+1,t} = \begin{bmatrix} \mathbf{R}_t \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(t+1) \times t}$$
 be the full QR decomposition of

 $\mathbf{T}_{t+1,t}$ using application of a series of 2 × 2 Householder reflections.

Letting
$$\mathbf{Q}_{t+1}\mathbf{T}_{t+1,t} = \begin{bmatrix} \mathbf{R}_t \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(t+1) \times t}$$
 be the full QR decomposition of $\mathbf{T}_{t+1,t}$ using application of a series of 2 × 2 Householder reflections.

Denoting $\mathbf{Q}_{t+1} \| \mathbf{g} \| \, \mathbf{e}_1 = \begin{bmatrix} \mathbf{u}_t \\ \phi_t \end{bmatrix}$, we have

$$\mathbf{y}_{t} = \underset{\mathbf{y} \in \mathbb{R}^{t}}{\arg\min} \left\| \mathbf{T}_{t+1,t} \mathbf{y} + \|\mathbf{g}\| \mathbf{e}_{1} \right\| = \underset{\mathbf{y} \in \mathbb{R}^{t}}{\arg\min} \left\| \begin{bmatrix} \mathbf{R}_{t} \\ \mathbf{0} \end{bmatrix} \mathbf{y} + \begin{bmatrix} \mathbf{u}_{t} \\ \phi_{t} \end{bmatrix} \right\|.$$

Letting
$$\mathbf{Q}_{t+1}\mathbf{T}_{t+1,t} = \begin{bmatrix} \mathbf{R}_t \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(t+1) \times t}$$
 be the full QR decomposition of $\mathbf{T}_{t+1,t}$ using application of a series of 2 × 2 Householder reflections.

 $\mathbf{I}_{t+1,t}$ using application of a series of 2×2 Householder reflection

Denoting
$$\mathbf{Q}_{t+1} \| \mathbf{g} \| \, \mathbf{e}_1 = \begin{bmatrix} \mathbf{u}_t \\ \phi_t \end{bmatrix}$$
, we have

$$\mathbf{y}_{t} = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \mathbf{T}_{t+1,t} \mathbf{y} + \|\mathbf{g}\| \, \mathbf{e}_{1} \right\| = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \begin{bmatrix} \mathbf{R}_{t} \\ \mathbf{0} \end{bmatrix} \mathbf{y} + \begin{bmatrix} \mathbf{u}_{t} \\ \phi_{t} \end{bmatrix} \right\|$$

Letting
$$\mathbf{Q}_{t+1}\mathbf{T}_{t+1,t} = \begin{bmatrix} \mathbf{R}_t \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(t+1) \times t}$$
 be the full QR decomposition of $\mathbf{T}_{t+1,t}$ using application of a series of 2 × 2 Householder reflections.

Denoting
$$\mathbf{Q}_{t+1} \| \mathbf{g} \| \mathbf{e}_1 = \begin{bmatrix} \mathbf{u}_t \\ \phi_t \end{bmatrix}$$
, we have

$$\mathbf{y}_{t} = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \mathbf{T}_{t+1,t} \mathbf{y} + \|\mathbf{g}\| \, \mathbf{e}_{1} \right\| = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \begin{bmatrix} \mathbf{R}_{t} \\ \mathbf{0} \end{bmatrix} \mathbf{y} + \begin{bmatrix} \mathbf{u}_{t} \\ \phi_{t} \end{bmatrix} \right\|$$

Letting
$$\mathbf{Q}_{t+1}\mathbf{T}_{t+1,t} = \begin{bmatrix} \mathbf{R}_t \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(t+1) \times t}$$
 be the full QR decomposition of $\mathbf{T}_{t+1,t}$ using application of a series of 2 × 2 Householder reflections.

Denoting
$$\mathbf{Q}_{t+1} \| \mathbf{g} \| \mathbf{e}_1 = \begin{bmatrix} \mathbf{u}_t \\ \phi_t \end{bmatrix}$$
, we have

$$\mathbf{y}_{t} = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \mathbf{T}_{t+1,t} \mathbf{y} + \|\mathbf{g}\| \, \mathbf{e}_{1} \right\| = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \begin{bmatrix} \mathbf{R}_{t} \\ \mathbf{0} \end{bmatrix} \mathbf{y} + \begin{bmatrix} \mathbf{u}_{t} \\ \phi_{t} \end{bmatrix} \right\|$$

$$\mathbf{D}_t = \mathbf{V}_t \mathbf{R}_t^{-1}$$

Letting
$$\mathbf{Q}_{t+1}\mathbf{T}_{t+1,t} = \begin{bmatrix} \mathbf{R}_t \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(t+1) \times t}$$
 be the full QR decomposition of $\mathbf{T}_{t+1,t}$ using application of a series of 2 × 2 Householder reflections.

Denoting $\mathbf{Q}_{t+1} \| \mathbf{g} \| \, \mathbf{e}_1 = \begin{bmatrix} \mathbf{u}_t \\ \phi_t \end{bmatrix}$, we have

$$\mathbf{y}_{t} = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \mathbf{T}_{t+1,t} \mathbf{y} + \|\mathbf{g}\| \, \mathbf{e}_{1} \right\| = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \begin{bmatrix} \mathbf{R}_{t} \\ \mathbf{0} \end{bmatrix} \mathbf{y} + \begin{bmatrix} \mathbf{u}_{t} \\ \phi_{t} \end{bmatrix} \right\|$$

$$\mathbf{D}_t = \mathbf{V}_t \mathbf{R}_t^{-1} = \begin{bmatrix} \mathbf{V}_{t-1} & \mathbf{v}_t \end{bmatrix} \begin{bmatrix} \mathbf{R}_{t-1}^{-1} & \mathbf{\star} \\ \mathbf{0}^{\mathsf{T}} & \mathbf{\star} \end{bmatrix}$$

Letting
$$\mathbf{Q}_{t+1}\mathbf{T}_{t+1,t} = \begin{bmatrix} \mathbf{R}_t \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(t+1) \times t}$$
 be the full QR decomposition of $\mathbf{T}_{t+1,t}$ using application of a series of 2 × 2 Householder reflections.

Denoting $\mathbf{Q}_{t+1} \| \mathbf{g} \| \, \mathbf{e}_1 = \begin{bmatrix} \mathbf{u}_t \\ \phi_t \end{bmatrix}$, we have

$$\mathbf{y}_{t} = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \mathbf{T}_{t+1,t} \mathbf{y} + \|\mathbf{g}\| \, \mathbf{e}_{1} \right\| = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \begin{bmatrix} \mathbf{R}_{t} \\ \mathbf{0} \end{bmatrix} \mathbf{y} + \begin{bmatrix} \mathbf{u}_{t} \\ \phi_{t} \end{bmatrix} \right\|$$

$$\begin{aligned} \mathbf{D}_t &= \mathbf{V}_t \mathbf{R}_t^{-1} = \begin{bmatrix} \mathbf{V}_{t-1} & \mathbf{v}_t \end{bmatrix} \begin{bmatrix} \mathbf{R}_{t-1}^{-1} & \star \\ \mathbf{0}^{\mathsf{T}} & \star \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{V}_{t-1} \mathbf{R}_{t-1}^{-1} & \mathbf{d}_t \end{bmatrix} \end{aligned}$$

Letting
$$\mathbf{Q}_{t+1}\mathbf{T}_{t+1,t} = \begin{bmatrix} \mathbf{R}_t \\ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(t+1) \times t}$$
 be the full QR decomposition of $\mathbf{T}_{t+1,t}$ using application of a series of 2 × 2 Householder reflections.

Denoting
$$\mathbf{Q}_{t+1} \| \mathbf{g} \| \mathbf{e}_1 = \begin{bmatrix} \mathbf{u}_t \\ \phi_t \end{bmatrix}$$
, we have

$$\mathbf{y}_{t} = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \mathbf{T}_{t+1,t} \mathbf{y} + \|\mathbf{g}\| \, \mathbf{e}_{1} \right\| = \operatorname*{arg\,min}_{\mathbf{y} \in \mathbb{R}^{t}} \left\| \begin{bmatrix} \mathbf{R}_{t} \\ \mathbf{0} \end{bmatrix} \mathbf{y} + \begin{bmatrix} \mathbf{u}_{t} \\ \phi_{t} \end{bmatrix} \right\|$$

$$\mathbf{D}_{t} = \mathbf{V}_{t} \mathbf{R}_{t}^{-1} = \begin{bmatrix} \mathbf{V}_{t-1} & \mathbf{v}_{t} \end{bmatrix} \begin{bmatrix} \mathbf{R}_{t-1}^{-1} & \star \\ \mathbf{0}^{\mathsf{T}} & \star \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{V}_{t-1} \mathbf{R}_{t-1}^{-1} & \mathbf{d}_{t} \end{bmatrix} = \begin{bmatrix} \mathbf{D}_{t-1} & \mathbf{d}_{t} \end{bmatrix}.$$

 $\mathbf{p}_t = \mathbf{V}_t \mathbf{y}_t$

$$\mathbf{p}_t = \mathbf{V}_t \mathbf{y}_t = -\mathbf{V}_t \mathbf{R}_t^{-1} \mathbf{u}_t$$

$$\mathbf{p}_t = \mathbf{V}_t \mathbf{y}_t = -\mathbf{V}_t \mathbf{R}_t^{-1} \mathbf{u}_t = -\mathbf{D}_t \mathbf{u}_t$$

$$\mathbf{p}_{t} = \mathbf{V}_{t}\mathbf{y}_{t} = -\mathbf{V}_{t}\mathbf{R}_{t}^{-1}\mathbf{u}_{t} = -\mathbf{D}_{t}\mathbf{u}_{t}$$
$$= \begin{bmatrix} \mathbf{D}_{t-1} & \mathbf{d}_{t} \end{bmatrix} \begin{bmatrix} -\mathbf{u}_{t-1} \\ \tau_{t} \end{bmatrix}$$

$$\mathbf{p}_{t} = \mathbf{V}_{t}\mathbf{y}_{t} = -\mathbf{V}_{t}\mathbf{R}_{t}^{-1}\mathbf{u}_{t} = -\mathbf{D}_{t}\mathbf{u}_{t}$$
$$= \begin{bmatrix} \mathbf{D}_{t-1} & \mathbf{d}_{t} \end{bmatrix} \begin{bmatrix} -\mathbf{u}_{t-1} \\ \tau_{t} \end{bmatrix} = \mathbf{p}_{t-1} + \tau_{t}\mathbf{d}_{t}$$

$$\mathbf{p}_{t} = \mathbf{V}_{t}\mathbf{y}_{t} = -\mathbf{V}_{t}\mathbf{R}_{t}^{-1}\mathbf{u}_{t} = -\mathbf{D}_{t}\mathbf{u}_{t}$$
$$= \begin{bmatrix} \mathbf{D}_{t-1} & \mathbf{d}_{t} \end{bmatrix} \begin{bmatrix} -\mathbf{u}_{t-1} \\ \tau_{t} \end{bmatrix} = \mathbf{p}_{t-1} + \tau_{t}\mathbf{d}_{t}$$

and from $\mathbf{V}_t = \mathbf{D}_t \mathbf{R}_t$ and the fact that only the diagonal, the super-diagonal, and the second super-diagonal elements of \mathbf{R}_t can be non-zero, we get

$$\mathbf{d}_t = \left(\mathbf{v}_t - \epsilon_t \mathbf{d}_{t-2} - \delta_t^{(2)} \mathbf{d}_{t-1}\right) / \gamma^{(2)}.$$

Algorithm 1 MINRES(H, g, η) 1: Input: Hessian H, gradient g, and inexactness tolerance $\eta > 0$ 2: $\phi_0 = \tilde{\beta}_1 = ||\mathbf{g}||, \mathbf{r}_0 = -\mathbf{g}, \mathbf{v}_1 = \mathbf{r}_0/\phi_0, \mathbf{v}_0 = \mathbf{s}_0 = \mathbf{w}_0 = \mathbf{w}_{-1} = \mathbf{0},$ 3: $s_0 = 0, c_0 = -1, \delta_1 = \tau_0 = 0, t = 1, D_{type} = 'SOL',$ 4: while True do $\mathbf{q}_t = \mathbf{H} \mathbf{v}_t, \ \tilde{\alpha}_t = \mathbf{v}_t^{\mathsf{T}} \mathbf{q}_t, \ \mathbf{q}_t = \mathbf{q}_t - \tilde{\beta}_t \mathbf{v}_{t-1}, \ \mathbf{q}_t = \mathbf{q}_t - \tilde{\alpha}_t \mathbf{v}_t, \ \tilde{\beta}_{t+1} = \|\mathbf{q}_t\|$ 51 $6: \quad \begin{bmatrix} \delta_t^{[2]} & \epsilon_{t+1} \\ \gamma_t & \delta_{t+1} \end{bmatrix} = \begin{bmatrix} c_{t-1} & s_{t-1} \\ s_{t-1} & -c_{t-1} \end{bmatrix} \begin{bmatrix} \delta_t & 0 \\ \tilde{\alpha}_t & \tilde{\beta}_{t+1} \end{bmatrix}$ if $c_{t-1}\gamma_t > 0$ then 7: $D_{type} = 'NPC'$ 8. return \mathbf{r}_{t-1} , \mathbf{D}_{type} , 9: end if 10: if $\phi_{t-1} \sqrt{\gamma_t^2 + \delta_{t+1}^2} \le \eta \sqrt{\phi_0^2 - \phi_{t-1}^2}$ then 11: 12: $D_{type} = 'SOL'$ return \mathbf{s}_{t-1} , \mathbf{D}_{type} 13: 14: end if 15: $\gamma_t^{[2]} = \sqrt{\gamma_t^2 + \tilde{\beta}_{t+1}^2},$ if $\gamma^{[2]} \neq 0$ then 16: $c_t = \gamma_t / \gamma_t^{[2]}, s_t = \tilde{\beta}_{t+1} / \gamma_t^{[2]}, \tau_t = c_t \phi_{t-1}, \phi_t = s_t \phi_{t-1},$ 17. $\mathbf{w}_{t} = \left(\mathbf{v}_{t} - \delta_{t}^{[2]}\mathbf{w}_{t-1} - \epsilon_{t}\mathbf{w}_{t-2}\right)/\gamma_{t}^{[2]}, \ \mathbf{s}_{t} = \mathbf{s}_{t-1} + \tau_{t}\mathbf{w}_{t}$ 18: if $\tilde{\beta}_{t+1} \neq 0$ then 19: $\mathbf{v}_{t+1} = \mathbf{q}_t / \tilde{\beta}_{t+1}, \ \mathbf{r}_t = s_t^2 \mathbf{r}_{t-1} - \phi_t c_t \mathbf{v}_{t+1},$ 20: 21: end if 22:else $c_t = 0, s_t = 1, \tau_t = 0, \phi_t = \phi_{t-1}, \mathbf{r}_t = \mathbf{r}_{t-1}, \mathbf{s}_t = \mathbf{s}_{t-1},$ 23: end if 24: $t \leftarrow t + 1$. 25:

CG VERSUS MINRES: AN EMPIRICAL COMPARISON*

DAVID CHIN-LUNG FONG[†] AND MICHAEL SAUNDERS[‡]

Abstract. For iterative solution of symmetric systems Ax = b, the conjugate gradient method (CG) is commonly used when A is positive definite, while the minimum residual method (MINRES) is typically reserved for indefinite systems. We investigate the sequence of approximate solutions x_k generated by each method and suggest that even if A is positive definite, MINRES may be preferable to CG if iterations are to be terminated early. In particular, we show for MINRES that the solution norms $||x_k||$ are monotonically increasing when A is positive definite (as was already known for CG), and the solution errors $||x^* - x_k||$ are monotonically decreasing. We also show that the backward errors for the MINRES iterates x_k are monotonically decreasing.

Key words. conjugate gradient method, minimum residual method, iterative method, sparse matrix, linear equations, CG, CR, MINRES, Krylov subspace method, trust-region method

1. Introduction. The conjugate gradient method (CG) [11] and the minimum residual method (MINRES) [18] are both Krylov subspace methods for the iterative solution of symmetric linear equations Ax = b. CG is commonly used when the matrix A is positive definite, while MINRES is generally reserved for indefinite systems [27, p85]. We reexamine this wisdom from the point of view of early termination on positive-definite systems.

We assume that the system Ax = b is real with A symmetric positive definite (spd) and of dimension $n \times n$. The Lanczos process [13] with starting vector b may be used to generate the $n \times k$ matrix $V_k \equiv (v_1 \quad v_2 \quad \dots \quad v_k)$ and the $(k + 1) \times k$

(Fong and Saunders, 2012)

MINRES terminates faster!

(Fong and Saunders, 2012)

CG	MINRES

	CG	MINRES
Simplicity	✓	×

	CG	MINRES
Simplicity	1	×
Coverage in Textbook	1	×

	CG	MINRES
Simplicity	1	×
Coverage in Textbook	1	×
Software Libraries	1	×

	CG	MINRES
Simplicity	\checkmark	×
Coverage in Textbook	\checkmark	×
Software Libraries	\checkmark	×
Theoretical Properties	\checkmark	?

	CG	MINRES
Simplicity	1	×
Coverage in Textbook	1	×
Software Libraries	1	×
Theoretical Properties	1	?
Numerical Properties	1	×

CG has optimal convergence rate $(\mathbf{H} \succ \mathbf{0})$:

CG has optimal convergence rate $(\mathbf{H} \succ \mathbf{0})$: letting $\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g}) = \text{Span}\{\mathbf{g}, \mathbf{Hg}, \dots, \mathbf{H}^{t-1}\mathbf{g}\}$, and noting that $\mathbf{Hp}^* = -\mathbf{g}$, we have

,
$$\mathbf{p} = -\rho_{t-1}(\mathbf{H})\mathbf{g} \qquad ,$$

$$\mathbf{p} = -p_{t-1}(\mathbf{H})\mathbf{g} \Longrightarrow \mathbf{p} - \mathbf{p}^{\star} = r_t(\mathbf{H})\mathbf{p}^{\star},$$

$$\mathbf{p} = -p_{t-1}(\mathbf{H})\mathbf{g} \Longrightarrow \mathbf{p} - \mathbf{p}^{\star} = r_t(\mathbf{H})\mathbf{p}^{\star},$$

where $r_t(\mathbf{H}) \triangleq \mathbf{I} - \mathbf{H}p_{t-1}(\mathbf{H})$ is a residual polynomial of degree *t*.

$$\mathbf{p} = -p_{t-1}(\mathbf{H})\mathbf{g} \Longrightarrow \mathbf{p} - \mathbf{p}^{\star} = r_t(\mathbf{H})\mathbf{p}^{\star},$$

where $r_t(\mathbf{H}) \triangleq \mathbf{I} - \mathbf{H}p_{t-1}(\mathbf{H})$ is a residual polynomial of degree t. Recall that if $\lambda \in \text{spec}(\mathbf{H})$, then $r_t(\lambda) \in \text{spec}(r_t(\mathbf{H}))$ (Spectral Mapping Theorem for Matrix Polynomials).

$$\mathbf{p} = -p_{t-1}(\mathbf{H})\mathbf{g} \Longrightarrow \mathbf{p} - \mathbf{p}^{\star} = r_t(\mathbf{H})\mathbf{p}^{\star},$$

where $r_t(\mathbf{H}) \triangleq \mathbf{I} - \mathbf{H}p_{t-1}(\mathbf{H})$ is a residual polynomial of degree t. Recall that if $\lambda \in \text{spec}(\mathbf{H})$, then $r_t(\lambda) \in \text{spec}(r_t(\mathbf{H}))$ (Spectral Mapping Theorem for Matrix Polynomials).

For CG, we had $\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\arg \min} \|\mathbf{p} - \mathbf{p}^{\star}\|_{\mathbf{H}}$, which implies

$$\mathbf{p} = -p_{t-1}(\mathbf{H})\mathbf{g} \Longrightarrow \mathbf{p} - \mathbf{p}^{\star} = r_t(\mathbf{H})\mathbf{p}^{\star},$$

where $r_t(\mathbf{H}) \triangleq \mathbf{I} - \mathbf{H}p_{t-1}(\mathbf{H})$ is a residual polynomial of degree t. Recall that if $\lambda \in \text{spec}(\mathbf{H})$, then $r_t(\lambda) \in \text{spec}(r_t(\mathbf{H}))$ (Spectral Mapping Theorem for Matrix Polynomials).

For CG, we had $\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{p} - \mathbf{p}^{\star}\|_{\mathbf{H}}$, which implies $\|\mathbf{p}_t - \mathbf{p}^{\star}\|_{\mathbf{H}}$

$$\mathbf{p} = -p_{t-1}(\mathbf{H})\mathbf{g} \Longrightarrow \mathbf{p} - \mathbf{p}^{\star} = r_t(\mathbf{H})\mathbf{p}^{\star},$$

where $r_t(\mathbf{H}) \triangleq \mathbf{I} - \mathbf{H}p_{t-1}(\mathbf{H})$ is a residual polynomial of degree t. Recall that if $\lambda \in \text{spec}(\mathbf{H})$, then $r_t(\lambda) \in \text{spec}(r_t(\mathbf{H}))$ (Spectral Mapping Theorem for Matrix Polynomials).

For CG, we had $\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\arg \min} \|\mathbf{p} - \mathbf{p}^{\star}\|_{\mathbf{H}}$, which implies $\|\mathbf{p}_t - \mathbf{p}^{\star}\|_{\mathbf{H}} = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\min} \|\mathbf{p} - \mathbf{p}^{\star}\|_{\mathbf{H}}$

$$\mathbf{p} = -p_{t-1}(\mathbf{H})\mathbf{g} \Longrightarrow \mathbf{p} - \mathbf{p}^{\star} = r_t(\mathbf{H})\mathbf{p}^{\star},$$

where $r_t(\mathbf{H}) \triangleq \mathbf{I} - \mathbf{H}p_{t-1}(\mathbf{H})$ is a residual polynomial of degree t. Recall that if $\lambda \in \text{spec}(\mathbf{H})$, then $r_t(\lambda) \in \text{spec}(r_t(\mathbf{H}))$ (Spectral Mapping Theorem for Matrix Polynomials).

For CG, we had $\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{p} - \mathbf{p}^*\|_{\mathbf{H}}$, which implies $\|\mathbf{p}_t - \mathbf{p}^*\|_{\mathbf{H}} = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\operatorname{min}} \|\mathbf{p} - \mathbf{p}^*\|_{\mathbf{H}} = \underset{r_t \in \Pi_t}{\operatorname{min}} \|r_t(\mathbf{H})\mathbf{p}^*\|_{\mathbf{H}}$

$$\mathbf{p} = -p_{t-1}(\mathbf{H})\mathbf{g} \Longrightarrow \mathbf{p} - \mathbf{p}^{\star} = r_t(\mathbf{H})\mathbf{p}^{\star},$$

where $r_t(\mathbf{H}) \triangleq \mathbf{I} - \mathbf{H}p_{t-1}(\mathbf{H})$ is a residual polynomial of degree t. Recall that if $\lambda \in \text{spec}(\mathbf{H})$, then $r_t(\lambda) \in \text{spec}(r_t(\mathbf{H}))$ (Spectral Mapping Theorem for Matrix Polynomials).

For CG, we had $\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{p} - \mathbf{p}^*\|_{\mathbf{H}}$, which implies $\|\mathbf{p}_t - \mathbf{p}^*\|_{\mathbf{H}} = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\operatorname{min}} \|\mathbf{p} - \mathbf{p}^*\|_{\mathbf{H}} = \underset{r_t \in \Pi_t}{\operatorname{min}} \|r_t(\mathbf{H})\mathbf{p}^*\|_{\mathbf{H}}$ $\leq \|\mathbf{p}^*\|_{\mathbf{H}} \underset{r_t \in \Pi_t}{\operatorname{min}} \|r_t(\mathbf{H})\|$

$$\mathbf{p} = -p_{t-1}(\mathbf{H})\mathbf{g} \Longrightarrow \mathbf{p} - \mathbf{p}^{\star} = r_t(\mathbf{H})\mathbf{p}^{\star},$$

where $r_t(\mathbf{H}) \triangleq \mathbf{I} - \mathbf{H}p_{t-1}(\mathbf{H})$ is a residual polynomial of degree t. Recall that if $\lambda \in \text{spec}(\mathbf{H})$, then $r_t(\lambda) \in \text{spec}(r_t(\mathbf{H}))$ (Spectral Mapping Theorem for Matrix Polynomials).

For CG, we had $\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\arg\min} \|\mathbf{p} - \mathbf{p}^{\star}\|_{\mathbf{H}}$, which implies $\|\mathbf{p}_t - \mathbf{p}^{\star}\|_{\mathbf{H}} = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\min} \|\mathbf{p} - \mathbf{p}^{\star}\|_{\mathbf{H}} = \underset{r_t \in \Pi_t}{\min} \|r_t(\mathbf{H})\mathbf{p}^{\star}\|_{\mathbf{H}}$ $\leq \|\mathbf{p}^{\star}\|_{\mathbf{H}} \min_{r_t \in \Pi_t} \|r_t(\mathbf{H})\|$ $\leq \|\mathbf{p}^{\star}\|_{\mathbf{H}} \min_{r_t \in \Pi_t} \max_{\lambda \in \operatorname{spec}(\mathbf{H})} |r_t(\lambda)|.$

$$\mathbf{p} = -p_{t-1}(\mathbf{H})\mathbf{g} \Longrightarrow \mathbf{p} - \mathbf{p}^{\star} = r_t(\mathbf{H})\mathbf{p}^{\star},$$

where $r_t(\mathbf{H}) \triangleq \mathbf{I} - \mathbf{H}p_{t-1}(\mathbf{H})$ is a residual polynomial of degree t. Recall that if $\lambda \in \text{spec}(\mathbf{H})$, then $r_t(\lambda) \in \text{spec}(r_t(\mathbf{H}))$ (Spectral Mapping Theorem for Matrix Polynomials).

For CG, we had
$$\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\arg\min} \|\mathbf{p} - \mathbf{p}^*\|_{\mathbf{H}}$$
, which implies
 $\|\mathbf{p}_t - \mathbf{p}^*\|_{\mathbf{H}} = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\min} \|\mathbf{p} - \mathbf{p}^*\|_{\mathbf{H}} = \underset{r_t \in \Pi_t}{\min} \|r_t(\mathbf{H})\mathbf{p}^*\|_{\mathbf{H}}$
 $\leq \|\mathbf{p}^*\|_{\mathbf{H}} \underset{r_t \in \Pi_t}{\min} \|r_t(\mathbf{H})\|$
 $\leq \|\mathbf{p}^*\|_{\mathbf{H}} \underset{r_t \in \Pi_t}{\min} \underset{\lambda \in \text{spec}(\mathbf{H})}{\max} |r_t(\lambda)|.$

So, using properties of Chebyshev polynomials, we get

$$\|\mathbf{p}_t - \mathbf{p}^{\star}\|_{\mathbf{H}} \leq 2 \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^t \|\mathbf{p}^{\star}\|_{\mathbf{H}}.$$

One can show a similar bound for MINRES when $\mathbf{H} \succeq \mathbf{0}$:

$$\|\mathbf{r}_t\| \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^t \|\mathbf{g}\|.$$

Let

$$\mathbf{H} = \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Lambda} & & \\ & \boldsymbol{\Lambda}_{\perp} & \\ & & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix}^{\mathsf{T}}.$$

Let

$$\mathbf{H} = \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix} \begin{bmatrix} \Lambda & & \\ & \Lambda_{\perp} & \\ & & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix}^{\mathsf{T}}.$$

For any $0 < \theta < 1$

Let

$$\mathbf{H} = \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix} \begin{bmatrix} \Lambda & & \\ & \Lambda_{\perp} & \\ & & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix}^{\mathsf{T}}.$$

For any $0 < \theta < 1$, after at most

$$t \geq 0.25\sqrt{\max\{\kappa^+,\kappa^-\}}\log\left(4/ heta
ight),$$

iterations of MINRES

Let

$$\mathbf{H} = \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix} \begin{bmatrix} \Lambda & & \\ & \Lambda_{\perp} & \\ & & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix}^{\mathsf{T}}.$$

For any $0 < \theta < 1$, after at most

$$t \geq 0.25\sqrt{\max\{\kappa^+,\kappa^-\}}\log\left(4/ heta
ight),$$

iterations of MINRES, we have

$$\left\|\mathbf{U}_{n}\mathbf{U}_{n}^{\mathsf{T}}\mathbf{g}\right\|^{2} \leq \left\|\mathbf{r}_{t}\right\|^{2} \leq \left\|\mathbf{U}_{n}\mathbf{U}_{n}^{\mathsf{T}}\mathbf{g}\right\|^{2} + \theta \left\|\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{g}\right\|^{2},$$

Let

$$\mathbf{H} = \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix} \begin{bmatrix} \Lambda & & \\ & \Lambda_{\perp} & \\ & & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix}^{\mathsf{T}}.$$

For any $0 < \theta < 1$, after at most

$$t \geq 0.25\sqrt{\max\{\kappa^+,\kappa^-\}}\log\left(4/ heta
ight),$$

iterations of MINRES, we have

$$\left\|\mathbf{U}_{n}\mathbf{U}_{n}^{\mathsf{T}}\mathbf{g}\right\|^{2} \leq \left\|\mathbf{r}_{t}\right\|^{2} \leq \left\|\mathbf{U}_{n}\mathbf{U}_{n}^{\mathsf{T}}\mathbf{g}\right\|^{2} + \theta \left\|\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{g}\right\|^{2},$$

and in particular,

$$\|\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{r}_{t}\|^{2} \leq \theta \|\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{g}\|^{2}$$
.

Let

$$\mathbf{H} = \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix} \begin{bmatrix} \Lambda & & \\ & \Lambda_{\perp} & \\ & & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{U} & \mathbf{U}_{\perp} & \mathbf{U}_{n} \end{bmatrix}^{\mathsf{T}}.$$

For any $0 < \theta < 1$, after at most

$$t \geq 0.25\sqrt{\max\{\kappa^+,\kappa^-\}}\log\left(4/ heta
ight),$$

iterations of MINRES, we have

$$\left\|\mathbf{U}_{n}\mathbf{U}_{n}^{\mathsf{T}}\mathbf{g}\right\|^{2} \leq \left\|\mathbf{r}_{t}\right\|^{2} \leq \left\|\mathbf{U}_{n}\mathbf{U}_{n}^{\mathsf{T}}\mathbf{g}\right\|^{2} + \theta \left\|\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{g}\right\|^{2},$$

and in particular,

$$\|\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{r}_{t}\|^{2} \leq \theta \|\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{g}\|^{2}$$
.

Available general convergence results for indefinite problems imply rates depending on κ^+ and κ^- as opposed to $\sqrt{\kappa^+}$ and $\sqrt{\kappa^-}$.

$$\frac{\mathsf{CG}}{\min_{\mathbf{p}\in\mathcal{K}_{t}(\mathsf{H}_{k},\mathbf{g})}\langle\mathbf{p},\mathbf{g}\rangle+\langle\mathbf{p},\mathsf{Hp}\rangle/2}$$

$$\frac{\mathsf{CG}}{\min_{\mathbf{p}\in\mathcal{K}_t(\mathsf{H}_k,\mathbf{g})}\langle \mathbf{p},\mathbf{g}\rangle + \langle \langle \mathbf{p},\mathbf{Hp}\rangle \rangle/2}$$

$$\frac{\mathsf{CG}}{\min_{\mathbf{p}\in\mathcal{K}_t(\mathsf{H}_k,\mathbf{g})}\langle\mathbf{p},\mathbf{g}\rangle+\langle\langle\mathbf{p},\mathsf{Hp}\rangle\rangle/2}$$

CG's NPC Condition
$$\langle \mathbf{d}_t, \mathbf{H}\mathbf{d}_t \rangle \leq 0$$

$$\frac{\mathsf{CG}}{\min_{\mathbf{p}\in\mathcal{K}_t(\mathsf{H}_k,\mathbf{g})}}\langle\mathbf{p},\mathbf{g}\rangle + \langle\langle\mathbf{p},\mathsf{Hp}\rangle\rangle/2$$

 $\frac{\text{CG's NPC Condition}}{\langle \mathbf{d}_t, \mathbf{H}\mathbf{d}_t \rangle \leq 0}$

The NPC condition can be checked almost for free in CG since we always compute $\langle \mathbf{d}_t, \mathbf{H} \mathbf{d}_t \rangle$ in every iteration to find CG's step size α_t .

$$\begin{array}{c} \begin{array}{c} \mathsf{Minimum Residual} \\ \min_{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|^2 \end{array}$$

$$\begin{array}{c} \hline \text{Minimum Residual} \\ \min_{\mathbf{p} \in \mathcal{K}_{t}(\mathbf{H},\mathbf{g})} \langle \mathbf{p}, \mathbf{H}\mathbf{g} \rangle + \left\langle \mathbf{p}, \mathbf{H}^{2}\mathbf{p} \right\rangle / 2 \end{array}$$

Minimum Residual $\min_{\mathbf{p}\in\mathcal{K}_{t}(\mathbf{H},\mathbf{g})}\left\langle \mathbf{p},\mathbf{Hg}\right\rangle +\left\langle \mathbf{p},\mathbf{H}^{2}\mathbf{p}\right\rangle /2$ \odot

Minimum Residual $\min_{\mathbf{p}\in\mathcal{K}_{t}(\mathbf{H},\mathbf{g})} \langle \mathbf{p},\mathbf{H}\mathbf{g}\rangle + \left\langle \mathbf{p},\mathbf{H}^{2}\mathbf{p}\right\rangle / 2$ ٢

$$\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\arg \min} \left\| \mathbf{H} \mathbf{p} + \mathbf{g} \right\|^2$$

$$\mathbf{p}_t = \underset{\mathbf{p} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|^2 \iff \mathbf{r}_t = \mathbf{H}\mathbf{p}_t + \mathbf{g} \perp \mathbf{H}\mathcal{K}_t$$

$$\mathbf{p}_{t} = \underset{\mathbf{p} \in \mathcal{K}_{t}(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|^{2} \iff \mathbf{r}_{t} = \mathbf{H}\mathbf{p}_{t} + \mathbf{g} \perp \mathbf{H}\mathcal{K}_{t}$$

It is easy to show that $\mathbf{r}_i \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$ for any $i \leq t - 1$.

$$\mathbf{p}_{t} = \underset{\mathbf{p} \in \mathcal{K}_{t}(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|^{2} \iff \mathbf{r}_{t} = \mathbf{H}\mathbf{p}_{t} + \mathbf{g} \perp \mathbf{H}\mathcal{K}_{t}$$

It is easy to show that $\mathbf{r}_i \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$ for any $i \leq t - 1$. This implies that

$$\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_j \rangle = 0, \quad i \neq j.$$

$$\mathbf{p}_{t} = \underset{\mathbf{p} \in \mathcal{K}_{t}(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|^{2} \iff \mathbf{r}_{t} = \mathbf{H}\mathbf{p}_{t} + \mathbf{g} \perp \mathbf{H}\mathcal{K}_{t}$$

It is easy to show that $\mathbf{r}_i \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$ for any $i \leq t - 1$. This implies that

$$\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_j \rangle = 0, \quad i \neq j.$$

One can also show that as long as $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle \neq 0$, for all $0 \leq i \leq t - 1$, then $\text{Span}\{\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_{t-1}\} = \mathcal{K}_t(\mathbf{H}, \mathbf{g}).$

$$\mathbf{p}_{t} = \underset{\mathbf{p} \in \mathcal{K}_{t}(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|^{2} \iff \mathbf{r}_{t} = \mathbf{H}\mathbf{p}_{t} + \mathbf{g} \perp \mathbf{H}\mathcal{K}_{t}$$

It is easy to show that $\mathbf{r}_i \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$ for any $i \leq t - 1$. This implies that

$$\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_j \rangle = 0, \quad i \neq j.$$

One can also show that as long as $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle \neq 0$, for all $0 \leq i \leq t - 1$, then $\text{Span}\{\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_{t-1}\} = \mathcal{K}_t(\mathbf{H}, \mathbf{g})$. In particular, suppose $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle > 0$, for all $0 \leq i \leq t - 1$ and let $\mathbf{0} \neq \mathbf{v} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$.

$$\mathbf{p}_{t} = \underset{\mathbf{p} \in \mathcal{K}_{t}(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|^{2} \iff \mathbf{r}_{t} = \mathbf{H}\mathbf{p}_{t} + \mathbf{g} \perp \mathbf{H}\mathcal{K}_{t}$$

It is easy to show that $\mathbf{r}_i \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$ for any $i \leq t - 1$. This implies that

$$\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_j \rangle = 0, \quad i \neq j.$$

One can also show that as long as $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle \neq 0$, for all $0 \leq i \leq t - 1$, then Span $\{\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_{t-1}\} = \mathcal{K}_t(\mathbf{H}, \mathbf{g})$. In particular, suppose $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle > 0$, for all $0 \leq i \leq t - 1$ and let $\mathbf{0} \neq \mathbf{v} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$. We can write $\mathbf{v} = [\mathbf{r}_0 | \mathbf{r}_1 | \dots | \mathbf{r}_{t-1}]\mathbf{c}$ for some $\mathbf{0} \neq \mathbf{c} \in \mathbb{R}^t$.

$$\mathbf{p}_{t} = \underset{\mathbf{p} \in \mathcal{K}_{t}(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|^{2} \iff \mathbf{r}_{t} = \mathbf{H}\mathbf{p}_{t} + \mathbf{g} \perp \mathbf{H}\mathcal{K}_{t}$$

It is easy to show that $\mathbf{r}_i \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$ for any $i \leq t - 1$. This implies that

$$\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_j \rangle = 0, \quad i \neq j.$$

One can also show that as long as $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle \neq 0$, for all $0 \leq i \leq t - 1$, then Span $\{\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_{t-1}\} = \mathcal{K}_t(\mathbf{H}, \mathbf{g})$. In particular, suppose $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle > 0$, for all $0 \leq i \leq t - 1$ and let $\mathbf{0} \neq \mathbf{v} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$. We can write $\mathbf{v} = [\mathbf{r}_0 | \mathbf{r}_1 | \dots | \mathbf{r}_{t-1}]\mathbf{c}$ for some $\mathbf{0} \neq \mathbf{c} \in \mathbb{R}^t$. We have

$$\langle \mathbf{v}, \mathbf{H} \mathbf{v}
angle = \sum_{i=1}^{t} c_i^2 \langle \mathbf{r}_i, \mathbf{H} \mathbf{r}_i
angle > 0.$$

$$\mathbf{p}_{t} = \underset{\mathbf{p} \in \mathcal{K}_{t}(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|^{2} \iff \mathbf{r}_{t} = \mathbf{H}\mathbf{p}_{t} + \mathbf{g} \perp \mathbf{H}\mathcal{K}_{t}$$

It is easy to show that $\mathbf{r}_i \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$ for any $i \leq t - 1$. This implies that

$$\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_j \rangle = 0, \quad i \neq j.$$

One can also show that as long as $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle \neq 0$, for all $0 \leq i \leq t - 1$, then Span $\{\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_{t-1}\} = \mathcal{K}_t(\mathbf{H}, \mathbf{g})$. In particular, suppose $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle > 0$, for all $0 \leq i \leq t - 1$ and let $\mathbf{0} \neq \mathbf{v} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$. We can write $\mathbf{v} = [\mathbf{r}_0 | \mathbf{r}_1 | \dots | \mathbf{r}_{t-1}]\mathbf{c}$ for some $\mathbf{0} \neq \mathbf{c} \in \mathbb{R}^t$. We have

$$\langle \mathbf{v}, \mathbf{H}\mathbf{v} \rangle = \sum_{i=1}^{t} c_i^2 \langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle > 0.$$

In other words, as long as $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle > 0$, for all $0 \le i \le t - 1$, we have $\langle \mathbf{v}, \mathbf{H}\mathbf{v} \rangle > 0$ for any $\mathbf{0} \ne \mathbf{v} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$.

$$\mathbf{p}_{t} = \underset{\mathbf{p} \in \mathcal{K}_{t}(\mathbf{H}, \mathbf{g})}{\operatorname{arg min}} \|\mathbf{H}\mathbf{p} + \mathbf{g}\|^{2} \iff \mathbf{r}_{t} = \mathbf{H}\mathbf{p}_{t} + \mathbf{g} \perp \mathbf{H}\mathcal{K}_{t}$$

It is easy to show that $\mathbf{r}_i \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$ for any $i \leq t - 1$. This implies that

$$\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_j \rangle = 0, \quad i \neq j.$$

One can also show that as long as $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle \neq 0$, for all $0 \leq i \leq t - 1$, then Span $\{\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_{t-1}\} = \mathcal{K}_t(\mathbf{H}, \mathbf{g})$. In particular, suppose $\langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle > 0$, for all $0 \leq i \leq t - 1$ and let $\mathbf{0} \neq \mathbf{v} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$. We can write $\mathbf{v} = [\mathbf{r}_0 | \mathbf{r}_1 | \dots | \mathbf{r}_{t-1}]\mathbf{c}$ for some $\mathbf{0} \neq \mathbf{c} \in \mathbb{R}^t$. We have

$$\langle \mathbf{v}, \mathbf{H}\mathbf{v} \rangle = \sum_{i=1}^{t} c_i^2 \langle \mathbf{r}_i, \mathbf{H}\mathbf{r}_i \rangle > 0.$$

In other words, as long as $\langle \mathbf{r}_i, \mathbf{Hr}_i \rangle > 0$, for all $0 \le i \le t - 1$, we have $\langle \mathbf{v}, \mathbf{Hv} \rangle > 0$ for any $\mathbf{0} \ne \mathbf{v} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$. Conversely, $\langle \mathbf{r}_{t-1}, \mathbf{Hr}_{t-1} \rangle \le 0$, then $\langle \mathbf{v}, \mathbf{Hv} \rangle > 0$ for some $\mathbf{0} \ne \mathbf{v} \in \mathcal{K}_t(\mathbf{H}, \mathbf{g})$, namely $\mathbf{v} = \mathbf{r}_{t-1}$.
$\frac{\text{MINRES' NPC Condition}}{\langle \mathbf{r}_{t-1}, \mathbf{Hr}_{t-1} \rangle \leq 0}$

$\frac{\text{MINRES' NPC Condition}}{\langle \mathbf{r}_{t-1}, \mathbf{Hr}_{t-1} \rangle \leq 0}$

The NPC condition can be readily checked as

$$\langle \mathsf{r}_{t-1},\mathsf{Hr}_{t-1}\rangle = \mathbf{A}_{t-1} \times \mathbf{A}_{t}$$

```
Suppose \langle \mathbf{r}_i, \mathbf{Hr}_i \rangle > 0, 0 \le i \le t - 1.
```

```
• \mathbf{T}_i \succ \mathbf{0}, \quad 1 \leq i \leq t
```

- Suppose $\langle \mathbf{r}_i, \mathbf{Hr}_i \rangle > 0$, $0 \le i \le t 1$.
 - $\mathbf{T}_i \succ \mathbf{0}, \quad 1 \leq i \leq t$
 - If $t=|\Lambda(\mathsf{H})|$, then $\mathsf{H}\succeq \mathbf{0}$ (Pick the r.h.s vector uniformly at random from unit sphere)

- $\mathbf{T}_i \succ \mathbf{0}, \quad 1 \leq i \leq t$
- If $t=|\Lambda({f H})|$, then ${f H}\succeq {f 0}$ (Pick the r.h.s vector uniformly at random from unit sphere)
- $\langle \mathbf{p}_i, \mathbf{g} \rangle < \langle \mathbf{p}_i, \mathbf{H} \mathbf{p}_i \rangle < \mathbf{0}, \quad 1 \le i \le t$

- $\mathbf{T}_i \succ \mathbf{0}, \quad 1 \leq i \leq t$
- If $t=|\Lambda({f H})|$, then ${f H}\succeq {f 0}$ (Pick the r.h.s vector uniformly at random from unit sphere)
- $\langle \mathbf{p}_i, \mathbf{g} \rangle < \langle \mathbf{p}_i, \mathbf{H} \mathbf{p}_i \rangle < \mathbf{0}, \quad 1 \le i \le t$
- $\langle \mathbf{g}, \mathbf{p}_i \rangle + \langle \mathbf{p}_i, \mathbf{H}\mathbf{p}_i \rangle / 2$, $0 \le i \le t$

- $\mathbf{T}_i \succ \mathbf{0}, \quad 1 \leq i \leq t$
- If $t=|\Lambda({f H})|$, then ${f H}\succeq {f 0}$ (Pick the r.h.s vector uniformly at random from unit sphere)
- $\langle \mathbf{p}_i, \mathbf{g} \rangle < \langle \mathbf{p}_i, \mathbf{H} \mathbf{p}_i \rangle < \mathbf{0}, \quad 1 \le i \le t$
- $\langle \mathbf{g}, \mathbf{p}_i \rangle + \langle \mathbf{p}_i, \mathbf{H}\mathbf{p}_i \rangle / 2$, $0 \le i \le t$
- $\|\mathbf{p}_i\| \uparrow$, $0 \le i \le t$

CG	MINRES

CG	MINRES
$\langle \mathbf{d}_t, \mathbf{H} \mathbf{d}_t angle \leq 0$	$\langle r_{t-1},Hr_{t-1} angle \leq 0$
	CG $\langle \mathbf{d}_t, \mathbf{H} \mathbf{d}_t \rangle \leq 0$

	CG	MINRES
NPC Condition	$\langle \mathbf{d}_t, \mathbf{H} \mathbf{d}_t angle \leq 0$	$\langle r_{t-1},Hr_{t-1} angle \leq 0$
1st-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle < 0$	$\langle \mathbf{p}_t, \mathbf{g} angle < 0$

	CG	MINRES
NPC Condition	$\langle {f d}_t, {f H} {f d}_t angle \leq 0$	$\langle r_{t-1},Hr_{t-1} angle \leq 0$
1st-order descent	$\langle {f p}_t, {f g} angle < 0$	$\langle {f p}_t, {f g} angle < 0$
2nd-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle + rac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0 (\begin{tabular}{c} \mathbf{p}_t, \mathbf{g} \end{tabular})$	$\langle \mathbf{p}_t, \mathbf{g} angle + rac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0 (\begin{tabular}{c} \mathbf{p}_t, \mathbf{g} \end{tabular})$

	CG	MINRES
NPC Condition	$\langle {f d}_t, {f H} {f d}_t angle \leq 0$	$\langle r_{t-1},Hr_{t-1} angle \leq 0$
1st-order descent	$\langle {f p}_t, {f g} angle < 0$	$\langle {f p}_t, {f g} angle < 0$
2nd-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle + rac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0 (igcup)$	$\langle \mathbf{p}_t, \mathbf{g} angle + rac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0 (igcup)$
"2.5th"-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle + \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle = 0$	$\langle \mathbf{p}_t, \mathbf{g} angle + \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0$

	CG	MINRES
NPC Condition	$\langle {f d}_t, {f H} {f d}_t angle \leq 0$	$\langle r_{t-1},Hr_{t-1} angle \leq 0$
1st-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle < 0$	$\langle \mathbf{p}_t, \mathbf{g} angle < 0$
2nd-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle + rac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0 (\begin{tabular}{ c } 1 \end{tabular})$	$\langle \mathbf{p}_t, \mathbf{g} angle + rac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0 (\begin{tabular}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
"2.5th"-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle + \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle = 0$	$\langle \mathbf{p}_t, \mathbf{g} angle + \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0$
1st-order descent for $\ \mathbf{g}\ ^2$	$\langle \mathbf{p}_t, \mathbf{H} \mathbf{g} angle = - \left\ \mathbf{g} ight\ ^2 < 0$	$\langle \mathbf{p}_t, \mathbf{H}\mathbf{g} \rangle = - \ \mathbf{H}\mathbf{p}_t\ ^2 < 0$

	CG	MINRES
NPC Condition	$\langle \mathbf{d}_t, \mathbf{H} \mathbf{d}_t angle \leq 0$	$\langle r_{t-1},Hr_{t-1} angle \leq 0$
1st-order descent	$\langle {f p}_t, {f g} angle < 0$	$\langle {f p}_t, {f g} angle < 0$
2nd-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle + rac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0 (\)$	$\langle \mathbf{p}_t, \mathbf{g} angle + rac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0 (\)$
"2.5th"-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle + \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle = 0$	$\langle \mathbf{p}_t, \mathbf{g} angle + \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0$
1st-order descent for $\ \mathbf{g}\ ^2$	$\langle \mathbf{p}_t, \mathbf{H}\mathbf{g} angle = - \left\ \mathbf{g} ight\ ^2 < 0$	$\langle \mathbf{p}_t, \mathbf{H}\mathbf{g} angle = - \ \mathbf{H}\mathbf{p}_t\ ^2 < 0$
Norm of iterates	p t	p t

	CG	MINRES
NPC Condition	$\langle \mathbf{d}_t, \mathbf{H} \mathbf{d}_t angle \leq 0$	$\langle r_{t-1},Hr_{t-1} angle \leq 0$
1st-order descent	$\langle {f p}_t, {f g} angle < 0$	$\langle \mathbf{p}_t, \mathbf{g} angle < 0$
2nd-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle + rac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0 (\)$	$\langle \mathbf{p}_t, \mathbf{g} angle + rac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0 (\)$
"2.5th"-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle + \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle = 0$	$\langle \mathbf{p}_t, \mathbf{g} angle + \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0$
1st-order descent for $\ \mathbf{g}\ ^2$	$\langle \mathbf{p}_t, \mathbf{H}\mathbf{g} angle = - \left\ \mathbf{g} ight\ ^2 < 0$	$\langle \mathbf{p}_t, \mathbf{H}\mathbf{g} angle = - \ \mathbf{H}\mathbf{p}_t\ ^2 < 0$
Norm of iterates	p t	p t
1st-order descent (NPC)	$\langle \mathbf{d}_t, \mathbf{g} angle = - \ \mathbf{r}_t\ ^2 < 0$	$\langle \mathbf{r}_{t-1}, \mathbf{g} angle = - \ \mathbf{r}_{t-1}\ ^2 < 0$

	CG	MINRES
NPC Condition	$\langle \mathbf{d}_t, \mathbf{H} \mathbf{d}_t angle \leq 0$	$\langle r_{t-1},Hr_{t-1} angle \leq 0$
1st-order descent	$\langle {f p}_t, {f g} angle < 0$	$\langle \mathbf{p}_t, \mathbf{g} angle < 0$
2nd-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle + rac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0 (\begin{tabular}{ c } 1 \end{tabular})$	$\langle \mathbf{p}_t, \mathbf{g} \rangle + \frac{1}{2} \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t \rangle < 0 (\begin{tabular}{ c } 1 \end{tabular})$
"2.5th"-order descent	$\langle \mathbf{p}_t, \mathbf{g} angle + \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle = 0$	$\langle \mathbf{p}_t, \mathbf{g} angle + \langle \mathbf{p}_t, \mathbf{H} \mathbf{p}_t angle < 0$
1st-order descent for $\ \mathbf{g}\ ^2$	$\langle \mathbf{p}_t, \mathbf{Hg} angle = - \ \mathbf{g}\ ^2 < 0$	$\langle \mathbf{p}_t, \mathbf{H}\mathbf{g} angle = - \ \mathbf{H}\mathbf{p}_t\ ^2 < 0$
Norm of iterates	p _t	p _t
1st-order descent (NPC)	$\langle \mathbf{d}_t, \mathbf{g} angle = - \ \mathbf{r}_t\ ^2 < 0$	$\langle \mathbf{r}_{t-1}, \mathbf{g} angle = - \ \mathbf{r}_{t-1}\ ^2 < 0$
1st-order non-ascent for $\ \mathbf{g}\ ^2$ (NPC)	$\langle {f d}_t, {f H}{f g} angle = 0$	$\langle \mathbf{r}_{t-1},\mathbf{Hg} angle = 0$

	CG	MINRES
Simplicity	\checkmark	X
Coverage in Textbook	\checkmark	X
Software Libraries	\checkmark	X
Theoretical Properties	\checkmark	?
Numerical Properties	\checkmark	X

	CG	MINRES
Simplicity	\checkmark	X
Coverage in Textbook	\checkmark	X
Software Libraries	\checkmark	X
Theoretical Properties	\checkmark	\checkmark
Numerical Properties	\checkmark	X

MINRES is a much more general purpose than CG, and hence it is a more complicated.

MINRES is a much more general purpose than CG, and hence it is a more complicated. It turns out there is a much simpler alternative algorithm that for all intents and purposes as an optimization sub-problem solver is "identical" to MINRES.

MINRES is a much more general purpose than CG, and hence it is a more complicated. It turns out there is a much simpler alternative algorithm that for all intents and purposes as an optimization sub-problem solver is "identical" to MINRES. Recall CG iterations are formed by solving:

$$\mathbf{p}_t = rgmin_{\mathbf{p}\in\mathcal{K}_t} \; \; rac{1}{2} \left< \mathbf{p}, \mathbf{H} \mathbf{p}
ight> + \left< \mathbf{p}, \mathbf{g}
ight>.$$

MINRES is a much more general purpose than CG, and hence it is a more complicated. It turns out there is a much simpler alternative algorithm that for all intents and purposes as an optimization sub-problem solver is "identical" to MINRES. Recall CG iterations are formed by solving:

$$\mathbf{p}_t = \operatorname*{arg\,min}_{\mathbf{p}\in\mathcal{K}_t} \; rac{1}{2} \left< \mathbf{p}, \mathbf{H}\mathbf{p} \right> + \left< \mathbf{p}, \mathbf{g} \right>.$$

If $H \succ 0,$ we have we can replace the Euclidean inner product by an H-inner product and get

$$\mathbf{p}_{t} = \underset{\mathbf{p} \in \mathcal{K}_{t}}{\operatorname{arg\,min}} \ \frac{1}{2} \left\langle \mathbf{p}, \mathbf{H} \mathbf{p} \right\rangle_{\mathbf{H}} + \left\langle \mathbf{p}, \mathbf{g} \right\rangle_{\mathbf{H}} = \underset{\mathbf{p} \in \mathcal{K}_{t}}{\operatorname{arg\,min}} \ \frac{1}{2} \left\| \mathbf{H} \mathbf{p} + \mathbf{g} \right\|^{2}.$$

Algorithm Conjugate Residual¹

1:
$$\mathbf{r}_0 = \mathbf{d}_1 = -\mathbf{g}$$
, and $\mathbf{p}_0 = \mathbf{0}$
2: for $t = 1, 2, \dots$ until $\|\mathbf{r}_{t-1}\| \le \tau$ do
3: $\alpha_t = \langle \mathbf{r}_{t-1}, \mathbf{r}_{t-1} \rangle_{\mathbf{H}} / \langle \mathbf{d}_t, \mathbf{H} \mathbf{d}_t \rangle_{\mathbf{H}}$
4: $\mathbf{p}_t = \mathbf{p}_{t-1} + \alpha_t \mathbf{d}_t$
5: $\mathbf{r}_t = \mathbf{r}_{t-1} - \alpha_t \mathbf{H} \mathbf{d}_t$
6: $\beta_{t+1} = \langle \mathbf{r}_t, \mathbf{r}_t \rangle_{\mathbf{H}} / \langle \mathbf{r}_{t-1}, \mathbf{r}_{t-1} \rangle_{\mathbf{H}}$
7: $\mathbf{d}_{t+1} = \mathbf{r}_t + \beta_{t+1} \mathbf{d}_t$
8: end for

 $^{^{1}}$ CR can be implemented to have one matrix-vector product per iteration, in which case it requires one more vector of storage and one more vector update than the CG.

Algorithm Conjugate Residual¹

1:
$$\mathbf{r}_0 = \mathbf{d}_1 = -\mathbf{g}$$
, and $\mathbf{p}_0 = \mathbf{0}$
2: for $t = 1, 2, \dots$ until $\|\mathbf{r}_{t-1}\| \le \tau$ do
3: $\alpha_t = \langle \mathbf{r}_{t-1}, \mathbf{H}\mathbf{r}_{t-1} \rangle / \|\mathbf{H}\mathbf{d}_t\|^2$
4: $\mathbf{p}_t = \mathbf{p}_{t-1} + \alpha_t \mathbf{d}_t$
5: $\mathbf{r}_t = \mathbf{r}_{t-1} - \alpha_t \mathbf{H}\mathbf{d}_t$
6: $\beta_{t+1} = \langle \mathbf{r}_t, \mathbf{H}\mathbf{r}_t \rangle / \langle \mathbf{r}_{t-1}, \mathbf{H}\mathbf{r}_{t-1} \rangle$
7: $\mathbf{d}_{t+1} = \mathbf{r}_t + \beta_{t+1}\mathbf{d}_t$

8: end for

 $^{^{1}}$ CR can be implemented to have one matrix-vector product per iteration, in which case it requires one more vector of storage and one more vector update than the CG.

Algorithm Conjugate Residual¹

1:
$$\mathbf{r}_0 = \mathbf{d}_1 = -\mathbf{g}$$
, and $\mathbf{p}_0 = \mathbf{0}$
2: for $t = 1, 2, \dots$ until $\|\mathbf{r}_{t-1}\| \le \tau$ do
3: $\alpha_t = \langle \mathbf{r}_{t-1}, \mathbf{H}\mathbf{r}_{t-1} \rangle / \|\mathbf{H}\mathbf{d}_t\|^2$
4: $\mathbf{p}_t = \mathbf{p}_{t-1} + \alpha_t \mathbf{d}_t$
5: $\mathbf{r}_t = \mathbf{r}_{t-1} - \alpha_t \mathbf{H}\mathbf{d}_t$
6: $\beta_{t+1} = \langle \mathbf{r}_t, \mathbf{H}\mathbf{r}_t \rangle / \langle \mathbf{r}_{t-1}, \mathbf{H}\mathbf{r}_{t-1} \rangle$
7: $\mathbf{d}_{t+1} = \mathbf{r}_t + \beta_{t+1}\mathbf{d}_t$

MINRES is also simple!

Theorem (Lim, Liu, and Roosta, 2024)

MINRES and CR are essentially the same for all **H** (not just PD)!

¹CR can be implemented to have one matrix-vector product per iteration, in which case it requires one more vector of storage and one more vector update than the CG.

	CG	MINRES/CR
Simplicity	✓	×
Coverage in Textbook	\checkmark	X
Software Libraries	\checkmark	X
Theoretical Properties	\checkmark	\checkmark
Numerical Properties	\checkmark	X

	CG	MINRES/CR
Simplicity	\checkmark	\checkmark
Coverage in Textbook	\checkmark	X
Software Libraries	\checkmark	X
Theoretical Properties	\checkmark	\checkmark
Numerical Properties	\checkmark	X

CG is unstable!

(Lim, Liu, and Roosta, 2024)

CG is unstable

CG is unstable

(Lim, Liu, and Roosta, 2024)

CG is unstable

CG is unstable and/or its solutions can be useless!

(Lim, Liu, and Roosta, 2024)

	CG	MINRES/CR
Simplicity	\checkmark	\checkmark
Coverage in Textbook	\checkmark	X
Software Libraries	\checkmark	X
Theoretical Properties	\checkmark	\checkmark
Numerical Properties		

	CG	MINRES/CR
Simplicity	\checkmark	\checkmark
Coverage in Textbook	\checkmark	X
Software Libraries	\checkmark	X
Theoretical Properties	\checkmark	\checkmark
Numerical Properties	\checkmark	×
$\|\mathbf{r}\| \leq \eta$

$$\left\| \left(\mathbf{I} - \mathbf{H} \mathbf{H}^{\dagger} \right) \mathbf{g} \right\| \le \| \mathbf{r} \| \le \eta$$

 $\|\mathbf{Hr}\| \leq \eta$

 $\|\mathbf{H}\mathbf{r}\| \leq \eta$

Theorem (Lim, Liu, and Roosta, 2024)

With CG, when $\mathbf{g} \notin \mathsf{Range}(\mathbf{H})$,

 $\|\mathbf{Hr}\| \leq \eta$

Theorem (Lim, Liu, and Roosta, 2024)

With CG, when $\mathbf{g} \notin \text{Range}(\mathbf{H})$, $\mathbf{p} \neq -\mathbf{H}^{\dagger}\mathbf{g} + (\mathbf{I} - \mathbf{H}^{\dagger}\mathbf{H})\mathbf{q}$, for any $\mathbf{q} \in \mathbb{R}^{d}$.

 $\|\mathbf{H}\mathbf{r}\| \leq \eta$

Theorem (Lim, Liu, and Roosta, 2024)

With CG, when $\mathbf{g} \notin \text{Range}(\mathbf{H})$, $\mathbf{p} \neq -\mathbf{H}^{\dagger}\mathbf{g} + (\mathbf{I} - \mathbf{H}^{\dagger}\mathbf{H})\mathbf{q}$, for any $\mathbf{q} \in \mathbb{R}^{d}$.

With MINRES, always,

 $\|\mathbf{Hr}\| \leq \eta$

Theorem (Lim, Liu, and Roosta, 2024)

With CG, when $\mathbf{g} \notin \text{Range}(\mathbf{H})$, $\mathbf{p} \neq -\mathbf{H}^{\dagger}\mathbf{g} + (\mathbf{I} - \mathbf{H}^{\dagger}\mathbf{H})\mathbf{q}$, for any $\mathbf{q} \in \mathbb{R}^{d}$.

With MINRES, always, $\mathbf{p} = -\mathbf{H}^{\dagger}\mathbf{g} + (\mathbf{I} - \mathbf{H}^{\dagger}\mathbf{H})\mathbf{q}$, for some $\mathbf{q} \in \mathbb{R}^{d}$.

	CG	MINRES/CR
Simplicity	\checkmark	\checkmark
Coverage in Textbook	\checkmark	X
Software Libraries	\checkmark	X
Theoretical Properties	\checkmark	\checkmark
Numerical Properties	X	\checkmark
Natural Termination	×	✓

	CG	MINRES/CR
Simplicity	\checkmark	\checkmark
Coverage in Textbook	\checkmark	×
Software Libraries	\checkmark	×
Theoretical Properties	✓	\checkmark
Numerical Properties	×	\checkmark
Natural Termination	×	✓

Fong, David Chin-Lung and Michael Saunders (2012). "CG versus MINRES: An empirical comparison". In: Sultan Qaboos University Journal for Science [SQUJS] 17.1, pp. 44–62. Liu, Yang and Fred Roosta (2022a). "A Newton-MR algorithm with complexity guarantees for nonconvex smooth unconstrained optimization". In: arXiv preprint arXiv:2208.07095. — (2022b). "MINRES: From Negative Curvature Detection to Monotonicity Properties". In: SIAM Journal on Optimization 32.4, pp. 2636-2661. Lim, Alexander, Yang Liu, and Fred Roosta (2024). "Conjugate Direction Methods Under Inconsistent Systems". In: arXiv preprint arXiv:2401.11714.