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Notation

@ scalars: lower case, e.g., «

Vectors: bold lower case, e.g., x

Matrices: bold upper case, e.g., H

g(x) £ Vf(x)

H(x) £ V2f(x)

Outer iteration counter: subscript, e.g., Xy, fx, 8k, Hxk

Inner iteration counter: superscript, e.g., pgf), p(t)

Inner product of v and w is denoted by (v, w)
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Loosely speaking, there are two classes of algorithms:
o 1%t-order algorithms, e.g., (projected) gradient descent

o Unconstrained (X = RY): x;1 = X — gk

o Constrained: x4y11 = Px (Xk - Oékgk)

e 2"_order algorithms, e.g., (projected) Newton's method

Linear System
——

o Unconstrained (X = RY): x1 = xx — ax H;lgk

o Constrained: xx41 = Xk + ak(yx — Xk), where

] 1
Yk = argmin (8k,Y — Xx) + = (Y — Xk, He(y — xx))
yeX 2
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Treating the subproblem solver as a black box often necessitates
@ unnecessary assumptions,
@ unnecessary safeguards,
@ complex analysis, and
°

complicated algorithms.

Leveraging the properties of a suitable solver can
@ reduce unnecessary assumptions,
@ remove unnecessary safeguards,
o simplify analysis, and
°

simplify algorithms.
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@ Consequences of treating subproblem solvers as “black box"

@ Open the the box and derive the properties of the solvers

© Integrate the inner and outer iterations

o

Inner N
Work Integration

Outer
Work
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Assumptions:

@ f has Lipschitz continuous gradient
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Start from xg

for k=1,2,...do

akp where Hip = —g (Line Search)
H
argmin (p,gx) + M (Trust Region)
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H
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end for
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Pk =9 lpl<Ax 2
H
argmin (p,gx) + (p.Hip) + 2k Ip«ll®  (Cubic Regularization)
Iplj € 2 3

Xk+1 = Xk + Pk
end for

Andrew R Conn, Nicholas IM Gould, and Ph L Toint (2000). Trust region methods. Vol. 1. SIAM; Jorge Nocedal and
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We only explore the line search framework, but the essence of what is to
come can applied to other frameworks as well.
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f(xx + apk) < f(xx), VYa € (0,a].

In words, there is a line segment from x along which the function has
smaller values than f(x).

Sufficient Condition for Descent

If (pk,8k) <0, then py is a descent direction for f at x.

In line search framework, the exact solution is px = —H;lgk. So to have
a descent direction, we need <gk, H;lgk> >0, Vk>0. Without any
other information, this can be guaranteed if H, > 0 for all k, i.e., if we

assume f is strongly convex.
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In “big data” regime, i.e., n > 1, Hessian evaluations can be very
expensive...We can sub-sample Hessian:

—{ Hessian Sub-Sampling k—

~ 1
H=— ZV2G(X), where S C {1,2,...,n}.
Now, the exact Newton's direction becomes py, = —[Iflk]*lgk. So to have

a descent direction, we need
(g [Hi]'gk) >0, Yk>0 and V[S|>1.

Without any other information, this can be guaranteed if each f; is strongly
convex.
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Part I: Black Box Approach
0000000@00000000000000000

Assumptions:

@ Each f; has Lipschitz continuous gradient

@ Each f; is strongly convex
Byrd et al. (2011) gives
lim 8k — 0,
k—o00

while with some extra variance assumption, Bollapragada, Byrd, and
Nocedal (2018) gives

E(fi — f*) < p*(fy — f*) forsome 0<p<1.
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Lemma (Roosta and Mahoney, 2019)

Suppose V2f(x) = ul and 0 < V2fi(x) < Lgl. Given any 0 < e <1,
0 < 6 < 1, if Hessian is uniformly sub-sampled with

S| >

9

2k log(d/0)
2

then
P(H = (1-e)ul) >1-56.

where k = Lg /1.

Follows from Matrix Chernoff (Tropp, 2011; Tropp, 2012) bound for
sampling with or without replacement. []
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a<2(1—-p8)(1—¢€)/k, we get f(xx + apk) < f + af (p«, 8k). Since,
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@ f is strongly convex but each f; is Strengly convex
e |S| € Q(r)

o |Hip+gk| <0kl

Theorem (Roosta and Mahoney, 2019)

With high probability, fri1 — f* < p(fx — *) for some 0 < p < 1.

We have (pk),gk> (pk ,Hkpk )y < —(1- e)p||p ||2 This coupled with

Fep + gell < 0lgell gives (p,gx) < —(1— 6% [lgill> /Lg® The proof then follows a
very similar line of reasoning as the exact case. O
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In this case, Hyx can become singular, and if gx ¢ Range(Hy), the system is
inconsistent, i.e.,

#p such that Hip = —g.

So, there might be no inverse H;l.... but there is always pseudo-inverse HL
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in f
o

Assumptions:
o f is relatively smoothness

L
F(y) < F(x) + (@(x).y = %) + 2 Iy — xl[fi
o f is Strengly relatively convex

F(y) = £(x) + (8(x).y = %) + & ly = xlig

Theorem (Karimireddy, Stich, and Jaggi, 2018)

With p, = —aHLgk and o < 1/Lg, we have fii1 — f* < p(fi — f*) for
some 0 < p < 1.

Note: No results for finite sum problems or inexact CG variant (AFAIK)
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What if f(x) is non-convex!

e Again, Hy can become singular, and if gx ¢ Range(Hy), the system is
inconsistent
e In addition, CG can breakdown, i.e., if Ip € K:(Hg,8k), (P, Hkp) <0,
then
<p7 Hkp>

inf , 4 L =
PGKt(Hkvgk)<p g 2

@ Even if CG does not breakdown, many of its directions may be ascent
directions, i.e., <p§(t),gk> > 0, for example, px = —[Hx] gk where

Hy invertible but indefinite
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Safeguards/Strategies
@ Goldstein-Price Method (Goldstein and Price, 1967):
H”0 — p=-g

@ Modify the spectrum of the Hessian:
o Goldfeld et al. Method (Goldfeld, Quandt, and Trotter, 1966):

H# 0 = H<+ H+ )
o Gill-Murray's modified Cholesky (Gill, Murray, and Wright, 2019):

H+E=LDLT where D>0
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Safeguards/Strategies (continued...)

@ Negative curvature direction methods, i.e., find p s.t. (p, Hp) < 0:

o Gill-Murray Stable Newton's Method: construct p using E, D and
L from the modified Cholesky

o Fiacco-McCormick Method (Fiacco and McCormick, 1990):
construct p using D and L from “LU-factorization”, LDLT

o Fletcher-Freeman Method (Fletcher and Freeman, 1977):
construct p based on stable symmetric indefinite factorization due
to Bunch and Parlett (1971)

@ Line search Newton-CG with a safeguard...
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Algorithm 7.1 (Line Search Newton-CG).
Given initial point xo;
fork=0,1,2,...
Define tolerance ¢, = min(0.5, /[V DIV fxll;
Setzg = 0,79 =V fi,do = —ro = —V fi;
for j =

7=0
return py = —V fi;

returs
T T
Setarj = rj rj/dj B dj;
Setzjy =zj +a;dj;
Setrjy =rj+a;Bd);
if rjnll < e

return p = Zj415
Set B =r]\rjni /1] 1)
Setdji1 = —rjs1 + Bjnd)s
end (for)
Set X4y = X + o Py, where o satisfies the Wolfe, Goldstein, or
Armijo backtracking conditions (using o = 1 if possible);
end
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Algorithm 7.1 (Line Search Newton-CG).
Given initial point xo;
fork=0,1,2,...
Define tolerance ¢, = min(0.5, /[V DIV fxll;
Setzg = 0,79 =V fi,do = —ro = —V fi;

for j =0
Q7 Bd;
J=0

return py = —V fi;

returs
T AT BT
Seta; = rj rj/dj B dj;
Setzjy =zj +a;dj;
Setrjy =rj+a;Bd);
if [Irj1ll < €
return p = Zj415
_ T T,.
Set i1 =rjrjsl/rir)s
Setdji1 = —rjs1 + Bjnd)s
end (for)
Set X4y = X + o Py, where o satisfies the Wolfe, Goldstein, or
Armijo backtracking conditions (using o = 1 if possible);
end

“Algorithm 7.1 is well suited for large problems, but it has a weakness. When
the Hessian is nearly singular, the line search Newton-CG direction can be long

and of poor quality, requiring many function evaluations in the line search and

giving only a small reduction in the function.”
(Nocedal and Wright, 2006)
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Is there an optimal solver for symmetric but potentially indefinite/singular
system? Yes, the Minimum Residual (MINRES) method of Paige and
Saunders (1975).

@ More complex than CG

@ Much less covered in textbook

@ Far fewer software libraries

Optimal rate for all symmetric systems

Can easily handle inconsistent/indefinite systems

Every iteration of MINRES is a descent direction for ||g||?

°
pgf) = argmin ||gx + Hka2 <p§(), H, (gk + Hkpgf))> =0
PEX(Hi,8x)
= (p ()7 Hkgk = _HHkPk)H <0
V(Hgkll /2)

This category of methods will be referred to as Newton-MR methods.
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Theorem (Liu and Roosta, 2021)

With high probability, ||gk+1]| < p||gk|| for some 0 < p < 1.
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A potential “black-box" remedy (Crane and Roosta, 2020):
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Unfortunately, these steps can be of poor quality and the performance of
the algorithm may not be competitive in many cases.
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