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Background Part I: Black Box Approach References

min
x∈X⊆Rd

{

f (x)

= 1
n

n∑
i=1

fi (x)
}

f is twice (continuously) differentiable and lower bounded.

High-dimensional: d � 1.

“Big data”: n� 1
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Background Part I: Black Box Approach References

In machine learning:

f (x) = ED

Loss︷ ︸︸ ︷

`(

NN︷ ︸︸ ︷

h(x, a) , b)

︸ ︷︷ ︸
Risk

where (a, b) ∼ D

Empirical average using samples {(ai , b)}ni=1 gives

f (x) = 1
n

n∑
i=1

`(h(x, ai ), bi )

︸ ︷︷ ︸
empirical risk

= 1
n

n∑
i=1

fi (x)
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Background Part I: Black Box Approach References

Notation

scalars: lower case, e.g., α

Vectors: bold lower case, e.g., x

Matrices: bold upper case, e.g., H

g(x) , ∇f (x)

H(x) , ∇2f (x)

Outer iteration counter: subscript, e.g., xk , fk , gk , Hk

Inner iteration counter: superscript, e.g., p(t)
k , p(t)

Inner product of v and w is denoted by 〈v,w〉
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Background Part I: Black Box Approach References

Loosely speaking, there are two classes of algorithms:

1st-order algorithms

, e.g., (projected) gradient descent

Unconstrained (X = Rd): xk+1 = xk − αkgk

Constrained: xk+1 = PX (xk − αkgk)

2nd-order algorithms

, e.g., (projected) Newton’s method

Unconstrained (X = Rd): xk+1 = xk − αk

Linear System︷ ︸︸ ︷

H−1
k gk

yk = arg min
y∈X

〈gk , y− xk〉+ 1
2 〈y− xk ,Hk(y− xk)〉

Constrained:
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Background Part I: Black Box Approach References

Ingredients for almost all Newton-type-algorithms:

Outer Iterations

Evaluate the function and its derivatives
Formulate the subproblem
Update the iterate
Check for convergence

Inner iterations

Iteratively solve the subproblem (approximately)
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Background Part I: Black Box Approach References

Treating the subproblem solver as a black box often necessitates
unnecessary assumptions,
unnecessary safeguards,
complex analysis, and
complicated algorithms.

Leveraging the properties of a suitable solver can
reduce unnecessary assumptions,
remove unnecessary safeguards,
simplify analysis, and
simplify algorithms.
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Background Part I: Black Box Approach References

Outline:

1 Consequences of treating subproblem solvers as “black box”

2 Open the the box and derive the properties of the solvers

3 Integrate the inner and outer iterations
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Background Part I: Black Box Approach References

min
x∈Rd

{
f (x) = 1

n

n∑
i=1

fi (x)
}

Assumptions:

f has Lipschitz continuous gradient
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Background Part I: Black Box Approach References

Algorithm Generic 2nd-order Method
Start from x0

for k = 1, 2, . . . do

pk =



αkp where Hkp = −gk (Line Search)

arg min
‖p‖≤∆k

〈p, gk〉+ 〈p,Hkp〉
2 (Trust Region)

arg min
‖p‖∈Rd

〈p, gk〉+ 〈p,Hkp〉
2 + σk

3 ‖pk‖3 (Cubic Regularization)

xk+1 = xk + pk

end for

Andrew R Conn, Nicholas IM Gould, and Ph L Toint (2000). Trust region methods. Vol. 1. SIAM; Jorge Nocedal and

Stephen Wright (2006). Numerical optimization. Springer Science & Business Media; Coralia Cartis, Nicholas IM Gould, and

Philippe L Toint (2022). Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation and

Perspectives. SIAM 10 / 32
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Background Part I: Black Box Approach References

We only explore the line search framework, but the essence of what is to
come can applied to other frameworks as well.

11 / 32



Background Part I: Black Box Approach References

Descent Direction
A direction pk ∈ Rd is a descent direction for f at xk if ∃ᾱ > 0, such that

f (xk + αpk) < f (xk), ∀α ∈ (0, ᾱ].

In words, there is a line segment from x along which the function has
smaller values than f (x).

Sufficient Condition for Descent
If 〈pk , gk〉 < 0, then pk is a descent direction for f at xk .

In line search framework, the exact solution is pk = −H−1
k gk . So to have

a descent direction, we need
〈
gk ,H−1

k gk
〉
> 0, ∀k ≥ 0. Without any

other information, this can be guaranteed if Hk � 0 for all k,

i.e., if we
assume f is strongly convex.
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a descent direction, we need

〈
gk ,H−1

k gk
〉
> 0, ∀k ≥ 0. Without any

other information, this can be guaranteed if Hk � 0 for all k,

i.e., if we
assume f is strongly convex.
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In words, there is a line segment from x along which the function has
smaller values than f (x).

Sufficient Condition for Descent
If 〈pk , gk〉 < 0, then pk is a descent direction for f at xk .

In line search framework, the exact solution is pk = −H−1
k gk . So to have

a descent direction, we need
〈
gk ,H−1

k gk
〉
> 0, ∀k ≥ 0. Without any

other information, this can be guaranteed if Hk � 0 for all k, i.e., if we
assume f is strongly convex.

12 / 32



Background Part I: Black Box Approach References

min
x∈Rd

{
f (x) = 1

n

n∑
i=1

fi (x)
}

Assumptions:
f has Lipschitz continuous gradient

f is strongly convex

13 / 32



Background Part I: Black Box Approach References

In “big data” regime, i.e., n� 1, Hessian evaluations can be very
expensive...

We can sub-sample Hessian:

Ĥ = 1
|S|

∑
j∈S
∇2fj(x), where S ⊂ {1, 2, . . . , n}.

Hessian Sub-Sampling

Now, the exact Newton’s direction becomes pk = −[Ĥk ]−1gk . So to have
a descent direction, we need〈

gk , [Ĥk ]−1gk
〉
> 0, ∀ k ≥ 0 and ∀ |S| ≥ 1.

Without any other information, this can be guaranteed if each fi is strongly
convex.
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Background Part I: Black Box Approach References

min
x∈Rd

{
f (x) = 1

n

n∑
i=1

fi (x)
}

Assumptions:
Each fi has Lipschitz continuous gradient
Each fi is strongly convex

Byrd et al. (2011) gives

lim
k→∞

gk = 0,

while with some extra variance assumption, Bollapragada, Byrd, and
Nocedal (2018) gives

E (fk − f ?) ≤ ρk (f0 − f ?) for some 0 ≤ ρ < 1.

15 / 32



Background Part I: Black Box Approach References

min
x∈Rd

{
f (x) = 1

n

n∑
i=1

fi (x)
}

Assumptions:
Each fi has Lipschitz continuous gradient
Each fi is strongly convex

Byrd et al. (2011) gives

lim
k→∞

gk = 0,

while with some extra variance assumption, Bollapragada, Byrd, and
Nocedal (2018) gives

E (fk − f ?) ≤ ρk (f0 − f ?) for some 0 ≤ ρ < 1.

15 / 32



Background Part I: Black Box Approach References

min
x∈Rd

{
f (x) = 1

n

n∑
i=1

fi (x)
}

Assumptions:
Each fi has Lipschitz continuous gradient
Each fi is strongly convex

Byrd et al. (2011) gives

lim
k→∞

gk = 0,

while with some extra variance assumption, Bollapragada, Byrd, and
Nocedal (2018) gives

E (fk − f ?) ≤ ρk (f0 − f ?) for some 0 ≤ ρ < 1.

15 / 32



Background Part I: Black Box Approach References

What if f is strongly convex, but each fi is only convex?

Example
Suppose fi (x) = `i (〈ai , x〉 , bi ), where `i : R× R→ R+ and `′′i ≥ γ > 0.

Also, suppose

Range({ai}ni=1) = Rd ,

and in particular n ≥ d .

Each ∇2fi (x) = `′′i (〈ai , x〉 , bi )aiaᵀi is rank one!

But ∇2f (x) � γ · λmin

( n∑
i=1

aiaᵀi

)

︸ ︷︷ ︸
>0
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Background Part I: Black Box Approach References

Lemma (Roosta and Mahoney, 2019)
Suppose ∇2f (x) � µI and 0 � ∇2fi (x) � LgI.

Given any 0 < ε < 1,
0 < δ < 1, if Hessian is uniformly sub-sampled with

|S| ≥ 2κ log(d/δ)
ε2

,

then
P
(
Ĥ � (1− ε)µI

)
≥ 1− δ.

where κ = Lg/µ.

Proof.
Follows from Matrix Chernoff (Tropp, 2011; Tropp, 2012) bound for
sampling with or without replacement.
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Background Part I: Black Box Approach References

min
x∈Rd

{
f (x) = 1

n

n∑
i=1

fi (x)
}

Assumptions:
Each fi has Lipschitz continuous gradient
f is strongly convex but each fi is����XXXXstrongly convex
|S| ∈ Ω(κ)

Theorem (Roosta and Mahoney, 2019)
With high probability, fk+1 − f ? ≤ ρ (fk − f ?) for some 0 ≤ ρ < 1.

Proof.

From Lipschitz continuity, we get f (xk + αpk) ≤ fk + α 〈pk , gk〉+ α2Lg ‖pk‖2 /2. If
α ≤ 2(1− β)(1− ε)/κ, we get f (xk + αpk) ≤ fk + αβ 〈pk , gk〉. Since,
(1− ε)µ ≺ Ĥk ≺ LgI, we have 〈pk , gk〉 = −

〈
pk , Ĥkpk

〉
≤ −(1− ε)µ ‖pk‖2 < 0, and

‖pk‖ = ‖[Ĥk ]−1gk‖ ≥ ‖gk‖ /Lg. Now, µ-strong convexity of f , gives the result.
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Background Part I: Black Box Approach References

In high-dimensional problems, i.e., d � 1, inverting the Hessian can be
impractical...

we can perform inexact update:

‖Hkp + gk‖ ≤ θ ‖gk‖ for some θ < 1.
Inexact Update

What solver to use? Conjugate gradient (CG) (Björck, 2015) is the most
widely used, giving rise to Newton-CG methods. But why CG?

Simple
Extensively covered in textbooks,
Many available software libraries,
Optimal rate for positive definite settings, and
Every iteration of CG is a descent direction

p(t)
k = arg min

p∈Kt (Hk ,gk )
〈p, gk〉+ 〈p,Hkp〉

2

=⇒
〈
p(t)

k , gk + Hkp(t)
k

〉
= 0

=⇒
〈
p(t)

k , gk
〉

= −
〈
p(t)

k ,Hkp(t)
k

〉
< 0
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Background Part I: Black Box Approach References

min
x∈Rd

{
f (x) = 1

n

n∑
i=1

fi (x)
}

Assumptions:
Each fi has Lipschitz continuous gradient
f is strongly convex but each fi is����XXXXstrongly convex
|S| ∈ Ω(κ)∥∥∥Ĥkp + gk

∥∥∥ ≤ θ ‖gk‖

Theorem (Roosta and Mahoney, 2019)
With high probability, fk+1 − f ? ≤ ρ (fk − f ?) for some 0 ≤ ρ < 1.

Proof.
We have 〈p(t)

k , gk〉 = −〈p(t)
k , Ĥkp(t)

k 〉 ≤ −(1− ε)µ‖p(t)
k ‖

2.

This coupled with
‖Ĥkp + gk‖ ≤ θ ‖gk‖ gives 〈p, gk〉 ≤ −(1− θ)2µ ‖gk‖2 /Lg

2. The proof then follows a
very similar line of reasoning as the exact case.
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k , Ĥkp(t)

k 〉 ≤ −(1− ε)µ‖p(t)
k ‖

2.

This coupled with
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Background Part I: Black Box Approach References

What if f (x) is convex but not strongly so!

In this case, Hk can become singular

, and if gk /∈ Range(Hk), the system is
inconsistent, i.e.,

@p such that Hkp = −gk .

So, there might be no inverse H−1
k

.... but there is always pseudo-inverse H†k
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Background Part I: Black Box Approach References

min
x∈Rd

f (x)

Assumptions:

f is relatively smoothness

f (y) ≤ f (x) + 〈g(x), y− x〉+ Lg
2 ‖y− x‖2H(x)

f is����XXXXstrongly relatively convex

f (y) ≥ f (x) + 〈g(x), y− x〉+ µ

2 ‖y− x‖2H(x)

Theorem (Karimireddy, Stich, and Jaggi, 2018)

With pk = −αH†kgk and α < 1/Lg, we have fk+1 − f ? ≤ ρ (fk − f ?) for
some 0 ≤ ρ < 1.

Note: No results for finite sum problems or inexact CG variant (AFAIK)
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Background Part I: Black Box Approach References

What if f (x) is non-convex!

Again, Hk can become singular, and if gk /∈ Range(Hk), the system is
inconsistent
In addition, CG can breakdown

, i.e., if ∃p ∈ Kt(Hk , gk), 〈p,Hkp〉 ≤ 0,
then

inf
p∈Kt (Hk ,gk )

〈p, gk〉+ 〈p,Hkp〉
2 = −∞

Even if CG does not breakdown, many of its directions may be ascent
directions

, i.e.,
〈
p(t)

k , gk
〉
> 0, for example, pk = −[Hk ]−1gk where

Hk invertible but indefinite
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Background Part I: Black Box Approach References

Safeguards/Strategies

Goldstein-Price Method (Goldstein and Price, 1967):

H 6� 0 =⇒ p = −g

Modify the spectrum of the Hessian:

Goldfeld et al. Method (Goldfeld, Quandt, and Trotter, 1966):

H 6� 0 =⇒ H← H + λI

Gill-Murray’s modified Cholesky (Gill, Murray, and Wright, 2019):

H + E = LDLᵀ where D � 0
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Background Part I: Black Box Approach References

Safeguards/Strategies (continued...)

Negative curvature direction methods, i.e., find p s.t. 〈p,Hp〉 < 0:

Gill-Murray Stable Newton’s Method: construct p using E, D and
L from the modified Cholesky

Fiacco-McCormick Method (Fiacco and McCormick, 1990):
construct p using D and L from “LU-factorization”, LDLᵀ

Fletcher-Freeman Method (Fletcher and Freeman, 1977):
construct p based on stable symmetric indefinite factorization due
to Bunch and Parlett (1971)

Line search Newton-CG with a safeguard...
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Background Part I: Black Box Approach References

“Algorithm 7.1 is well suited for large problems, but it has a weakness. When
the Hessian is nearly singular, the line search Newton-CG direction can be long
and of poor quality, requiring many function evaluations in the line search and
giving only a small reduction in the function.”

(Nocedal and Wright, 2006)
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Background Part I: Black Box Approach References

Is there an optimal solver for symmetric but potentially indefinite/singular
system?

Yes, the Minimum Residual (MINRES) method of Paige and
Saunders (1975).

More complex than CG
Much less covered in textbook
Far fewer software libraries
Optimal rate for all symmetric systems
Can easily handle inconsistent/indefinite systems
Every iteration of MINRES is a descent direction for ‖g‖2

p(t)
k = arg min

p∈Kt (Hk ,gk )
‖gk + Hkp‖2

=⇒
〈
p(t)

k ,Hk
(
gk + Hkp(t)

k

)〉
= 0

=⇒
〈
p(t)

k , Hkgk

︸ ︷︷ ︸
∇(‖gk‖2/2)

〉
= −

∥∥∥Hkp(t)
k

∥∥∥2
< 0

This category of methods will be referred to as Newton-MR methods.
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Background Part I: Black Box Approach References

min
x∈Rd

{
f (x) = 1

n

n∑
i=1

fi (x)
}

Assumptions:

‖g‖2 has Lipschitz continuous gradient

, i.e., moral smoothness

|S| is large enough∥∥∥Ĥkp + gk
∥∥∥ ≤ θ ‖gk‖

f is(((((
(((hhhhhhhhstrongly convex invex

, i.e., ∃η : Rd × Rd → Rd such that
f (y) ≥ f (x) + 〈η(x, y),∇f (x)〉 , ∀x, y.

Theorem (Liu and Roosta, 2021)
With high probability, ‖gk+1‖ ≤ ρ ‖gk‖ for some 0 ≤ ρ < 1.
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∥∥∥ ≤ θ ‖gk‖

f is(((((
(((hhhhhhhhstrongly convex invex, i.e., ∃η : Rd × Rd → Rd such that
f (y) ≥ f (x) + 〈η(x, y),∇f (x)〉 , ∀x, y.

Theorem (Liu and Roosta, 2021)
With high probability, ‖gk+1‖ ≤ ρ ‖gk‖ for some 0 ≤ ρ < 1.

28 / 32



Background Part I: Black Box Approach References

min
x∈Rd

{
f (x) = 1

n

n∑
i=1

fi (x)
}

Assumptions:
‖g‖2 has Lipschitz continuous gradient, i.e., moral smoothness
|S| is large enough∥∥∥Ĥkp + gk
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‖g‖2 has Lipschitz continuous gradient, i.e., moral smoothness
|S| is large enough∥∥∥Ĥkp + gk

∥∥∥ ≤ θ ‖gk‖

f is(((((
(((hhhhhhhhstrongly convex invex, i.e., ∃η : Rd × Rd → Rd such that
f (y) ≥ f (x) + 〈η(x, y),∇f (x)〉 , ∀x, y.
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What if f (x) is non-convex but non-invex!
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A potential “black-box” remedy (Crane and Roosta, 2020):

pk ≈ min
p
‖Hkp + gk‖2 + φ ‖p‖2

=⇒ 〈p, gk〉 ≤ −θ ‖gk‖2 (?)
If 3

, we use pk

If 7, pk ≈ min
p
‖Hkp + gk‖2 + φ ‖p‖2 s.t. 〈p, gk〉 ≤ −θ ‖gk‖2

It can be shown that when 7,

pk = −H̃†k g̃k − λk(H̃ᵀ
t,iH̃k)−1gk ,

λk = −〈H̃
†
k g̃k , gk〉+ θ‖gk‖2〈

(H̃ᵀ
kH̃k)−1gk , gk

〉 > 0.

where H̃ ,

[
H√
φI

]
and g̃ ,

(
g
0

)
.
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Unfortunately, these steps can be of poor quality and the performance of
the algorithm may not be competitive in many cases.
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