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Chebyshev (uniform) approximation

The theory of Chebyshev approximation for univariate functions
was developed in the late nineteenth (Chebyshev) and twentieth
century (just to name a few Vallée-Poussin, Rice, Nurnberger,
Schumaker). In most cases, the authors were working on
polynomial and polynomial spline approximations, however, other
types of functions (for example, trigonometric polynomials) have
also been used. In most cases, the optimality conditions are based
on the notion of alternance (that is, maximal deviation points with
alternating deviation signs).
There have been several attempts to extend this theory to the case
of multivariate functions. The main obstacle in extending these
results to the case of multivariate functions is that it is not very
easy to extend the notion of monotonicity to the case of several
variables.
We propose an alternative approach, which is based on the notion
of convexity and nonsmooth analysis.



Chebyshev (uniform) approximation

Approximation theory is concerned with the approximation of a
function f , defined on a (continuous or discrete) domain Ω, by
another function s taken from a family S. At any point t ∈ Ω the
difference

d(t) , s(t)− f (t)

is called the deviation at t, and the maximal absolute deviation is
defined as

‖s − f ‖ , sup
t∈Ω
|s(t)− f (t)|.

The problem of best Chebyshev approximation is to find a function
s∗ ∈ S minimising the maximal absolute deviation over S. Such a
function s∗ is called a best approximation of f .



Chebyshev’s Theorem

The seminal result of approximation theory is Chebyshev’s
alternation theorem which can be stated as follows. Let Pn be the
set of polynomials of degree at most n with real coefficients.

Theorem
(1854) A polynomial p∗ ∈ Pn is a best approximation to a
continuous function f on an interval [a, b] if and only if there exist
n + 2 points a ≤ t1 < . . . < tn+2 ≤ b and a number σ ∈ {−1, 1}
such that

(−1)iσ(f (ti )− p∗(ti )) = ‖f − p∗‖,∀i = 1 . . . , n + 2.

The sequence of points (ti )i=1,...,n+2 is called an alternating
sequence.
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Vallée-Poussin procedure to univariate polynomials

Definition
Any n + 2 points form a basis.

1. For any basis there exists a unique polynomial, such that the
absolute deviation at the basis points is the same and the
deviation sign is alternating (Chebyshev interpolation
polynomial).

2. If there is a point (outside of the current basis), such that the
absolute deviation at this point is higher than at the basis
points then this point can be included in the basis by
removing one of the current basis points and the deviation
signs are deviating.

3. The absolute deviation of the new Chebyshev interpolating
polynomial is at least as high as the absolute deviation for the
original basis.



Multivariate polynomials: definitions and notations

Definition
An exponent vector

e = (e1, . . . , el) ∈ Rl , ei ∈ N, i = 1, . . . , l

for x ∈ Rl defines a monomial
xe = xe1

1 xe2
2 . . . xell .

Definition
A product cxe , where c 6= 0 is called the term, then a multivariate
polynomial is a sum of a finite number of terms.



Multivariate polynomials: definitions and notations

Definition
The degree of a monomial xe is the sum of the components of e:

deg(xe) =
l∑

i=1

ei .

Definition
The degree of a polynomial is the largest degree of the composing
it monomials.



Polynomials

In general, a polynomial of degree m can be obtained as follows:

Pm(x) =
n∑

i=0

aiMi (x, e), (1)

where ai are the coefficients and gi = Mi are the monomials, such
that degMi ≤ m and there exists a monomial Mk , such that
deg(Mk) = m. Any polynomials Pm from (1) can be presented as
the sum of a lower degree polynomials (m − 1 or less) and a finite
number of terms that correspond to the monomials of degree m.



Dimension

The dimension of the parameter space of a polynomial of degree m
is d . Note that in the case of linear functions and univariate
function (that is, l = 1) d = l + 1. If l ≥ 2 and m ≥ 2 then d (the
total number of possible monomials of degree at least m) is
increasing very fast.

Example

Let l = 2 (variables x and y) and m = 2. Then the total number
of all possible monomials of degree zero is one, of degree one
is l = 2 (x and y) and of degree two is three (x2, y2 and xy).



Convexity of the objective function

Let us now formulate the objective function. Suppose that a
continuous function f (x) is to be approximated by a function

L(A, x) = a0 +
n∑

i=1

aigi (x), (2)

where gi (x), i = 1, . . . , n are the basis functions (not the degree!!!)
and the multipliers A = (a0, a1, . . . , an) are the corresponding
coefficients. At a point x the deviation between the function f
(also referred as approximation function) and the approximation is:

d(A, x) = |f (x)− L(A, x)|. (3)



Objective function reformulation

Then we can define the uniform approximation error over the set Q
by

Ψ(A) = sup
x∈Q

max{f (x)− a0 −
n∑

i=1

aigi (x), a0 +
n∑

i=1

aigi (x)− f (x)}.

(4)
The approximation problem is

minimise Ψ(A) subject to A ∈ Rn+1. (5)



Subdifferential

Since the function L(A, x) is linear in A, the approximation error
function Ψ(A), as the supremum of affine functions, is convex.
Furthermore, its subdifferential at a point A is trivially obtained
using the active affine functions in the supremum:

∂Ψ(A) = co




1
g1(x)

...
gn(x)

 : x ∈ E+,−


1

g1(x)
...

gn(x)

 : x ∈ E−

 , (6)

where E+ and E− are respectively the points of maximal positive
and negative deviation:

E+ =
{

x ∈ Q : f (x)− L(A, x) = max
y∈Q

d(A, y)
}
,

E− =
{

x ∈ Q : −f (x) + L(A, x) = max
y∈Q

d(A, y)
}
.



Necessary and sufficient optimality conditions

In the case of multivariate polynomial approximation,
gi (x), i = 1, . . . , n are monomials. Denote

g(x) = (g1(x), g2(x), . . . , gn(x)) ∈ Rn. (7)

The following theorem holds.

Theorem
A∗ is an optimal solution to problem (5) if and only if the convex
hulls of the vectors

g(x) = (g1(x), . . . , gn(x))T ,

built over corresponding positive and negative maximal deviation
points, intersect.



Another formulation

Assume that yi ∈ Rl , i = 1, . . . ,N+ are positive deviation points
and zj ∈ Rl , j = 1, . . . ,N− are negative deviation points. Also
assume that N+ + N− = n + 2 and construct the following sets:

Y = co {g(yi ), i = 1, . . . ,N+} (8)

and
Z = co {g(zj), j = 1, . . . ,N−} . (9)



Radon’s theorem and Basis

Published by Johann Radon in 1921.

Theorem
Any set of d + 2 points in Rd can be partitioned into two disjoint
sets whose convex hulls intersect.

Definition
A point in the intersection of these convex hulls is called a Radon
point of the set.

What do we call basis in multivariate case?

Definition
Any set of d + 2 points in Rd is called basis.



Relative interior and Basis

Definition
The relative interior of a set S (denoted by relint(S)) is defined as
its interior within the affine hull of S . That is,

relint(S) = {x ∈ S : ∃ε > 0,Bε(x) ∩ aff(S) ⊆ S},

where Bε(x) is a ball of radius ε centred in x and aff(S) is the
affine hull of S .

Definition
Consider a set S of n + 2 points partitioned into two sets, the sets
Y of points with positive deviation and Z of points with negative
deviation. These points are said to form a basis if the convex hulls
of Y and Z intersect. Furthermore, if the relative interiors of the
convex hulls intersect then the basis is said to be non-singular.



Useful property

A nice property of relative interiors of convex hulls of finite number
of points is formulated in the following lemma.

Lemma
Any relative interior point of a convex combination of a finite
number of points can be presented as a convex combination of all
these points with strictly positive convex combination coefficients
and vice versa.



Affine independent systems and Basis

Definition
Consider a set S of n + 2 points partitioned into two sets, the sets
Y of points with positive deviation and Z of points with negative
deviation. These points are said to form a basis if the convex hulls
of Y and Z intersect. Furthermore, if there exists an (n + 1)-point
subset forms an affine independent system in Rn then the basis is
said to be non-singular.



Optimality conditions and Basis
Ideal

Definition
Consider a set S of n + 2 points partitioned into two sets, the sets
Y of points with positive deviation and Z of points with negative
deviation. These points are said to form a basis if the convex hulls
of Y and Z intersect. Furthermore, if the removal of any point will
disconnect the convex hulls then the basis is said to be
non-singular.

Our definition

Definition
Consider a set S of n + 2 points partitioned into two sets, the sets
Y of points with positive deviation and Z of points with negative
deviation. These points are said to form a basis if the convex hulls
of Y and Z intersect. Furthermore, if relative interiors of these
sets are intersecting and there exists an (n + 1)-point subset forms
an affine independent system in Rn then the basis is said to be
non-singular.



STEP 1: Chebyshev interpolation polynomial

Theorem
Assume that a system of points yi , i = 1, . . . ,N+ and
zi , i = 1, . . . ,N− forms a non-singular basis. Then there exists a
unique polynomial deviating from f at the points
yi , i = 1, . . . ,N+ and zi , i = 1, . . . ,N− by the same value and the
deviation signs are opposite for yi and zi .



STEP 1: Proof



1 g(y1) 1
1 g(y2) 1
...

...
...

1 g(yN+) 1
1 g(z1) -1
1 g(z2) -1
...

...
...

1 g(zN−) -1



(
A
σ

)
=



f (y1)
f (y2)

...
f (yN+)
f (z1)
f (z2)

...
f (zN−)


, (10)

where A represents the parameters of the polynomial, while σ is
the deviation. If σ = 0, there exists a polynomial passing through
the chosen points (interpolation).



STEP 1: Proof: comments
The proof is relying on the fact that the basis is non-singular (any
n + 1 subset forms an affine independent system). However, the
optimality conditions are the same for singular and non-singular
basis, therefore we will have to reconsider the notion of singular
basis (or, ideally, not use it at all).

sign(det M̃) = 2(−1)l+2+i sign(detM+
i ) (11)

= 2(−1)l+2+N++j+1 sign(detM−j ). (12)

(13)

Let ∆k = det(Mk). If now we evaluate the determinant of M
directly, then

detM =

N+∑
i=1

(−1)l+2+i∆i +

N++N−∑
j=N++1

(−1)l+2+j+1∆j . (14)

Each component in the right hand side of (14) has the same sign.
Moreover, since none of the vertices can be removed without
disconnecting the sets, the determinant of M is not zero.



STEP 2: Basis update

Theorem
Consider two intersecting sets constructed as in (8) and (9).
Assume now that the deviation sign at y is the same as at the
vertices of (8) and opposite to the deviation sign at the vertices
of (9). There exists a point in the combined collection of vertices
of Y and Z, that can be removed while y is included in Y, such
that the updates sets Ỹ and Z̃ are intersecting.



Proof.
If there exists a point whose removal will not disconnect the
convex hulls, this points can be removed and the new points can
be included without disconnecting the updated convex hulls.
Otherwise, there exist strictly positive coefficients αi ,
i = 1, . . . ,N+ and βi , j = 1, . . . ,N−, such that

∑N+

i=1 αi = 1 and∑N−
j=1 βj = 1. Find

γ = min

{
min

i=1,...,N+

α̃i

αi
, min
j=1,...,N−

β̃j
βj

}
. (15)

First, assume that γ = α̃1
α1

. Note that α1 6= 0, then

y1 =
1

α1

N−∑
j=1

βjg(zj)−
N+∑
i=2

αig(yi )

 .

Then, the convex hull with the new point y is

αg(y)+
α̃1

α1

N−∑
j=1

βjg(zj)−
N+∑
i=2

αig(yi )

+

N+∑
i=2

˜αig(yi ) =

N−∑
j=1

β̃jg(zj)

(16)
and finally

αg(y) +

N+∑
i=2

(α̃i −
α̃i

αi
)g(yi ) =

N−∑
j=1

(β̃j −
α̃1

α1
)g(zj). (17)

Since αi > 0, i = 1, . . . ,N+ and the definition of γ, one can obtain
that for any i = 1, . . . ,N+

α̃i −
α̃1

α1
≥ α̃i −

α̃i

αi
= 0. (18)



STEP 3: Deviation update

Theorem
Assume that a point with a higher absolute deviation is included in
the basis instead of one of the points of the original basis. The
absolute deviation of the Chebyshev interpolation polynomial that
corresponds to the new basis is higher than the one of the
Chebyshev interpolation polynomial on the original basis.



Conclusions

By replacing the classical definition of “basis” by the proposed one,
the following generalisations can be obtained.

1. All the steps of Vallée-Poussin procedure has been generalised
to the case of multivariate polynomials for non-singular basis.

2. The corresponding proofs and formulations are very similar to
the univariate case.

3. In the case of a singular basis one has a dimension reduction.


