Turnpike theorems for terminal functionals in infinite horizon

Musa Mammadov
Federation University Australia

WoMBaT 24-25 November 2016, RMIT

Joint work with R.J. Evans (University of Melbourne), JMAA-2015

Outline:

- Turnpike theory
- Continuous time systems
- Terminal functionals
- Turnpike Theorems

Turnpike Theory

Optimal control problem:

- System: $\quad x_{t+1} \in a\left(x_{t}\right), \quad t=0,1,2, \cdots$.
- Functional Maximize: $\sum_{t=0}^{T} \mathbf{u}$

$$
\text { where } \quad \mathbf{u}=u\left(x_{t}\right) \quad \text { or } \quad \mathbf{u}=u\left(x_{t}, x_{t+1}\right)
$$

Turnpike property describes the "structure/behaviour" of optimal solutions when $T \rightarrow \infty$

- \exists "turnpike set/point" that attracts all opt. solutions
- J.V. Neumann, 1932-1945 - first result obtained
- 1932 - presented at a math.seminar at Princeton (D.Gale)
- 1937 - published in Vienna
- 1945 - translated into English
- P.A. Samuelson, 1948-1949 - Interpretation of Neumann's result
- 1958 - the term Turnpike was introduced in
- R. Dorfman, P.A. Samuelson and R.M. Solow, Linear Programming and Economic Analysis, 1958 (Chapter 12)
- A.M. Rubinov, 1973 - Classification of the turnpike property (linear systems - Neumann-Gale model)
- V.L. Makarov and A.M. Rubinov, Mathematical theory of economic dynamics and equilibria, 1973 (Russian)
- translated into English, 1977
- L. McKenzie, 1976 - Nonlinear systems (bounded trajectories)
- L. McKenzie, Turnpike Theory, Econometrica 44 (1976)

Discrete Systems: the main result

Turnpike property is true for convex problems

(graph a is convex, u is strongly concave)

Continuous time systems

System: $\quad \dot{x} \in a(x)$

Functional: Utility fun. $-\mathbf{u}(\mathbf{t})=u(x(t))$ or $u(x(t), \dot{x}(t))$

1. Discounted integral: $\int_{0}^{\infty} \mathbf{u}(\mathbf{t}) e^{-r t} d t$
2. Undiscounted integral: $\quad \int_{0}^{T} \mathbf{u}(\mathbf{t}) d t$
3. Terminal: $\quad \liminf _{t \rightarrow \infty} \mathbf{u}(\mathbf{t})$

Main focus: Convex Problems

- graph $a=\{(x, y): x \in \Omega, y \in a(x)\} \Rightarrow$ is convex;
- $u \Rightarrow$ is strongly concave.

Turnpike Theorems

Problem (P):

$$
\begin{gather*}
\dot{x}(t) \in a(x(t)), \quad \text { a.e. } t \geq 0 \tag{1}\\
\text { Maximize }: \quad J(\mathbf{x})=\liminf _{t \rightarrow \infty} u(x(t)) \tag{2}
\end{gather*}
$$

(i) multi-valued mapping a is defined on convex closed set \mathcal{D}_{a} with non-empty interior, has compact images and is upper semi-continuous in the Hausdorff metric;
(ii) there exists a bounded solution defined on $[0, \infty)$; that is, the set of solutions denoted by $\mathbf{X} \neq \emptyset$;
(iii) function u is continuous on \mathcal{D}_{u}, where $\mathcal{D}_{a} \subset \operatorname{int} \mathcal{D}_{u}$.

- u will be assumed to be quasi-concave or strictly quasi-concave on \mathcal{D}_{u} :

Function u is called quasi-concave if for every $x_{1} \neq x_{2}$

$$
u\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left\{u\left(x_{1}\right), u\left(x_{2}\right)\right\}, \quad \forall \lambda \in(0,1)
$$

If the above inequality is strong, $u(x)$ is called strictly quasi-concave.

- The set of stationary points

$$
M \triangleq\{x \in \Omega, \quad 0 \in \operatorname{co} a(x)\}
$$

- $x^{*} \in M$ is optimal stationary point if

$$
u\left(x^{*}\right)=\max _{x \in M} u(x)
$$

Class of multi-valued mappings \mathcal{A} :

given any set $A \subset \mathcal{D}_{a}$

$$
\begin{equation*}
\text { if } 0 \in \operatorname{co} a(A) \quad \text { then } \quad 0 \in \operatorname{co} a(x), \exists x \in \operatorname{co} A \text {. } \tag{A}
\end{equation*}
$$

Clearly if a has convex images then:

$$
\begin{equation*}
0 \in \operatorname{co} a(A) \quad \Rightarrow \quad 0 \in a(\operatorname{co} A) . \tag{c}
\end{equation*}
$$

The class \mathcal{A} is quite broad.

1: Convex mappings. Denote the graph of mapping a by

$$
\operatorname{graph} a \triangleq\left\{(x, y): \quad x \in \mathcal{D}_{a}, y \in a(x)\right\} .
$$

It is easy to verify that if graph a is a convex set then condition (A) holds.
Mappings with convex graphs are very important in many applications.
For example, macroeconomic models are usually convex.

2: Linear mappings. Consider linear systems where mapping a is given by

$$
a(x)=\{B x+C u ; \quad u \in U\} .
$$

Here B and C are $n \times n$ and $n \times r$ matrices and $U \subset R^{r}$ is any given set (not necessarily convex). Again, it is not difficult to verify that condition (A) holds without imposing any assumptions on matrices B, C and set U.

Main results

Theorem 0.1: (Upper bound of the functional) Assume that $a \in \mathcal{A}$ and function u is quasi-concave. Then

$$
\begin{equation*}
J(\mathbf{x}) \leq u^{*} \quad \text { for all solutions } \mathbf{x} \in \mathbf{X} \tag{3}
\end{equation*}
$$

Theorem 0.2: (Turnpike property) Assume that $a \in \mathcal{A}$, function u is strictly quasi-concave and there exists a unique o.s.p. x^{*}. Then any solution $\mathbf{x} \in \mathbf{X}$ satisfying $J(\mathbf{x})=u\left(x^{*}\right)$ (i.e. optimal by Theorem 0.1) converges to x^{*}; that is,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=x^{*}, \quad \forall \mathbf{x} \in \mathbf{X}, \quad J(\mathbf{x})=u\left(x^{*}\right) \tag{4}
\end{equation*}
$$

Corollary 0.3: Assume that $a \in \mathcal{A}$ and M is nonempty, convex and bounded. Then given any strictly quasi-concave function u, there exists a unique o.s.p. x^{*} and (4) holds.

The proof of Theorem 0.1 is based on the following result: If $a \in \mathcal{A}$ then

$$
\begin{equation*}
\text { co } P(\mathbf{x}) \cap M \neq \emptyset, \quad \forall \text { bounded solutions } \mathbf{x} . \tag{5}
\end{equation*}
$$

Here $P(\mathbf{x})$ is the set of ω-limit points:

$$
P(\mathbf{x}) \triangleq\left\{\xi: x\left(t_{k}\right) \rightarrow \xi \text { for some } t_{k} \rightarrow \infty\right\} .
$$

Interesting question: can (5) be satisfied if $a \notin \mathcal{A}$?

- YES in R^{2} (we do not have proof for this statement);
- NOT if $R^{n}, n \geq 3$; that is, relation (5) may not be satisfied for some bounded solution \mathbf{x} if $a \notin \mathcal{A}$.

Example:

$$
a(x, y, z)=\left\{\left(-y, x, 1-x^{2}-y^{2}\right):(x, y, z) \in R^{3}\right\}
$$

The solution from an initial point $(1,0,0)$ can be obtained as follows:

$$
x(t)=\cos (t), y(t)=\sin (t), \quad z(t)=0, \quad t \in[0, \infty)
$$

This solution is bounded and its ω-limit set is given by

$$
P=\left\{(x, y, z): z=0, x^{2}+y^{2}=1\right\}
$$

It easy to verify that the set

$$
\operatorname{co} P=\left\{(x, y, z): z=0, x^{2}+y^{2} \leq 1\right\}
$$

does not contain any stationary point; that is (5) does not hold.
It can also be shown that $a \notin \mathcal{A}$.

1. Since $a(x, y, z)$ is a singleton $0 \in \operatorname{co} a(x, y, z) \cong 0=a(x, y, z)$.

Now let $(\dot{x}, \dot{y}, \dot{z})=a(x, y, z)$. Clearly, if $x^{2}+y^{2}=1$ either $\dot{x} \neq 0$ or $\dot{y} \neq 0$; on the other hand, if $x^{2}+y^{2}<1$ then $\dot{z} \neq 0$. Thus, $0 \notin a(x, y, z)$ for all $(x, y, z) \in \operatorname{co} P$.
2. Since the images of a are convex (i.e. singleton) we verify condition $\left(A^{c}\right)$.

Consider the set of two points $A=\{(1,0,0),(-1,0,0)\} \subset P$. We have $a(1,0,0)=(0,1,0), a(-1,0,0)=(0,-1,0)$, and therefore

$$
(0,0,0)=\frac{1}{2} a(1,0,0)+\frac{1}{2} a(-1,0,0) \in \operatorname{co} a(A)
$$

However, $(0,0,0) \notin a(\operatorname{co} A)$. Indeed, for any $\lambda \in[0,1]$ for the points

$$
\left(x_{\lambda}, y_{\lambda}, z_{\lambda}\right)=\lambda(1,0,0)+(1-\lambda)(-1,0,0)=(2 \lambda-1,0,0) \in \operatorname{co} A
$$

we have

$$
a\left(x_{\lambda}, y_{\lambda}, z_{\lambda}\right)=\left(0,2 \lambda-1,1-(2 \lambda-1)^{2}\right) \neq(0,0,0), \quad \forall \lambda \in[0,1]
$$

which means that $a \notin \mathcal{A}$.

THANK YOU

