Turnpike theorems for terminal functionals in infinite horizon

Musa Mammadov Federation University Australia

WoMBaT 24-25 November 2016, RMIT

Joint work with R.J. Evans (University of Melbourne), JMAA-2015

Outline:

- Turnpike theory
- Continuous time systems
 - Terminal functionals
- Turnpike Theorems

Turnpike Theory

Optimal control problem:

- System: $x_{t+1} \in a(x_t), t = 0, 1, 2, \cdots$
- Functional Maximize: $\sum_{t=0}^{T} \mathbf{u}$ where $\mathbf{u} = u(x_t)$ or $\mathbf{u} = u(x_t, x_{t+1})$.

Turnpike property describes the "structure/behaviour" of optimal solutions when $T \rightarrow \infty$

• ∃ "turnpike set/point" that attracts all opt. solutions

- J.V. Neumann, 1932-1945 first result obtained
 - 1932 presented at a math.seminar at Princeton (D.Gale)
 - 1937 published in Vienna
 - 1945 translated into English
- P.A. Samuelson, 1948-1949 Interpretation of Neumann's result
- 1958 the term Turnpike was introduced in
 - *R. Dorfman, P.A. Samuelson and R.M. Solow,* Linear
 Programming and Economic Analysis, 1958 (Chapter 12)

- A.M. Rubinov, 1973 Classification of the turnpike property (linear systems - Neumann-Gale model)
 - V.L. Makarov and A.M. Rubinov, Mathematical theory of economic dynamics and equilibria, 1973 (Russian)
 - translated into English, 1977
- L. McKenzie, 1976 Nonlinear systems (bounded trajectories)
 - L. McKenzie, Turnpike Theory, Econometrica 44 (1976)

Discrete Systems: the main result

Turnpike property is true for convex problems (graph a is convex, u is strongly concave)

Continuous time systems

System: $\dot{x} \in a(x)$

Functional: Utility fun. - $\mathbf{u}(\mathbf{t}) = u(x(t))$ or $u(x(t), \dot{x}(t))$

- 1. Discounted integral: $\int_0^\infty \mathbf{u}(\mathbf{t}) \ e^{-rt} dt$
- 2. Undiscounted integral: $\int_0^T \mathbf{u}(\mathbf{t}) dt$
- 3. Terminal: $\liminf_{t\to\infty} \mathbf{u}(\mathbf{t})$

Main focus: Convex Problems

- $graph a = \{(x, y) : x \in \Omega, y \in a(x)\} \Rightarrow$ is convex;
- $u \Rightarrow$ is strongly concave.

Turnpike Theorems

Problem (P):

$$\dot{x}(t) \in a(x(t)), \quad \text{a.e. } t \ge 0;$$
 (1)

Maximize:
$$J(\mathbf{x}) = \liminf_{t \to \infty} u(x(t)).$$
 (2)

- (i) multi-valued mapping a is defined on convex closed set \mathcal{D}_a with non-empty interior, has compact images and is upper semi-continuous in the Hausdorff metric;
- (ii) there exists a bounded solution defined on $[0,\infty)$; that is, the set of solutions denoted by $\mathbf{X} \neq \emptyset$;
- (iii) function u is continuous on \mathcal{D}_u , where $\mathcal{D}_a \subset \operatorname{int} \mathcal{D}_u$.

• u will be assumed to be quasi-concave or strictly quasi-concave on \mathcal{D}_u :

Function u is called quasi-concave if for every $x_1 \neq x_2$

 $u(\lambda x_1 + (1 - \lambda)x_2) \ge \min\{u(x_1), u(x_2)\}, \quad \forall \lambda \in (0, 1).$

If the above inequality is strong, u(x) is called strictly quasi-concave.

• The set of stationary points

$$M \triangleq \{x \in \Omega, \ 0 \in \operatorname{co} a(x)\}$$

• $x^* \in M$ is optimal stationary point if

$$u(x^*) = \max_{x \in M} u(x)$$

Class of multi-valued mappings A:

given any set $A \subset \mathcal{D}_a$

if $0 \in \operatorname{co} a(A)$ then $0 \in \operatorname{co} a(x), \exists x \in \operatorname{co} A.$ (A)

Clearly if *a* has convex images then:

$$0 \in \operatorname{co} a(A) \implies 0 \in a(\operatorname{co} A). \tag{A^c}$$

The class \mathcal{A} is quite broad.

1: Convex mappings. Denote the graph of mapping a by

graph
$$a \triangleq \{(x, y) : x \in \mathcal{D}_a, y \in a(x)\}.$$

It is easy to verify that if graph a is a convex set then condition (A) holds. Mappings with convex graphs are very important in many applications. For example, macroeconomic models are usually convex. 2: Linear mappings. Consider linear systems where mapping a is given by

 $a(x) = \{Bx + Cu; u \in U\}.$

Here B and C are $n \times n$ and $n \times r$ matrices and $U \subset R^r$ is any given set (not necessarily convex). Again, it is not difficult to verify that condition (A) holds without imposing any assumptions on matrices B, C and set U.

Main results

Theorem 0.1: (Upper bound of the functional) Assume that $a \in A$ and function u is quasi-concave. Then

$$J(\mathbf{x}) \le u^*$$
 for all solutions $\mathbf{x} \in \mathbf{X}$. (3)

Theorem 0.2: (Turnpike property) Assume that $a \in A$, function u is strictly quasi-concave and there exists a unique o.s.p. x^* . Then any solution $\mathbf{x} \in \mathbf{X}$ satisfying $J(\mathbf{x}) = u(x^*)$ (i.e. optimal by Theorem 0.1) converges to x^* ; that is,

$$\lim_{t \to \infty} x(t) = x^*, \quad \forall \mathbf{x} \in \mathbf{X}, \ J(\mathbf{x}) = u(x^*).$$
(4)

Corollary 0.3: Assume that $a \in A$ and M is nonempty, convex and bounded. Then given any strictly quasi-concave function u, there exists a unique o.s.p. x^* and (4) holds. The proof of Theorem 0.1 is based on the following result: If $a \in \mathcal{A}$ then

 $\operatorname{co} P(\mathbf{x}) \cap M \neq \emptyset, \quad \forall \text{ bounded solutions } \mathbf{x}.$ (5)

Here $P(\mathbf{x})$ is the set of ω -limit points:

$$P(\mathbf{x}) \triangleq \{\xi : x(t_k) \to \xi \text{ for some } t_k \to \infty\}.$$

Interesting question: can (5) be satisfied if $a \notin \mathcal{A}$?

- YES in R^2 (we do not have proof for this statement);
- NOT if Rⁿ, n ≥ 3; that is, relation (5) may not be satisfied for some bounded solution x if a ∉ A.

Example:

$$a(x,y,z) = \{(-y,x,1-x^2-y^2): (x,y,z) \in \mathbb{R}^3\}.$$

The solution from an initial point (1,0,0) can be obtained as follows:

$$x(t) = \cos(t), \ y(t) = \sin(t), \ z(t) = 0, \ t \in [0, \infty).$$

This solution is bounded and its ω -limit set is given by

$$P = \{(x, y, z): z = 0, x^2 + y^2 = 1\}.$$

It easy to verify that the set

co
$$P = \{(x, y, z): z = 0, x^2 + y^2 \le 1\}$$

does not contain any stationary point; that is (5) does not hold. It can also be shown that $a \notin A$. **1.** Since a(x, y, z) is a singleton $0 \in \operatorname{co} a(x, y, z) \cong 0 = a(x, y, z)$.

Now let $(\dot{x}, \dot{y}, \dot{z}) = a(x, y, z)$. Clearly, if $x^2 + y^2 = 1$ either $\dot{x} \neq 0$ or $\dot{y} \neq 0$; on the other hand, if $x^2 + y^2 < 1$ then $\dot{z} \neq 0$. Thus, $0 \notin a(x, y, z)$ for all $(x, y, z) \in \operatorname{co} P$.

2. Since the images of *a* are convex (i.e. singleton) we verify condition (A^c) .

Consider the set of two points $A = \{(1,0,0), (-1,0,0)\} \subset P$. We have a(1,0,0) = (0,1,0), a(-1,0,0) = (0,-1,0), and therefore

$$(0,0,0) = \frac{1}{2}a(1,0,0) + \frac{1}{2}a(-1,0,0) \in \operatorname{co} a(A).$$

However, $(0,0,0) \notin a(\operatorname{co} A)$. Indeed, for any $\lambda \in [0,1]$ for the points

$$(x_{\lambda}, y_{\lambda}, z_{\lambda}) = \lambda (1, 0, 0) + (1 - \lambda)(-1, 0, 0) = (2\lambda - 1, 0, 0) \in \operatorname{co} A$$

we have

$$a(x_{\lambda}, y_{\lambda}, z_{\lambda}) = (0, 2\lambda - 1, 1 - (2\lambda - 1)^2) \neq (0, 0, 0), \quad \forall \lambda \in [0, 1]$$

which means that $a \notin \mathcal{A}$.

THANK YOU