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Turnpike Theory

Optimal control problem:

• System: xt+1 ∈ a(xt), t = 0, 1, 2, · · · .

• Functional Maximize:
∑T

t=0 u

where u = u(xt) or u = u(xt, xt+1).

Turnpike property describes the “structure/behaviour”

of optimal solutions when T →∞

• ∃ “turnpike set/point” that attracts all opt. solutions
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• J.V. Neumann, 1932-1945 - first result obtained

– 1932 - presented at a math.seminar at Princeton

(D.Gale)

– 1937 - published in Vienna

– 1945 - translated into English

• P.A. Samuelson, 1948-1949 - Interpretation of

Neumann’s result

• 1958 - the term Turnpike was introduced in

– R. Dorfman, P.A. Samuelson and R.M. Solow, Linear

Programming and Economic Analysis, 1958 (Chapter 12)
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• A.M. Rubinov, 1973 - Classification of the turnpike

property (linear systems - Neumann-Gale model)

– V.L. Makarov and A.M. Rubinov, Mathematical theory

of economic dynamics and equilibria, 1973 (Russian)

– translated into English, 1977

• L. McKenzie, 1976 - Nonlinear systems (bounded

trajectories)

– L. McKenzie, Turnpike Theory, Econometrica 44 (1976)

Discrete Systems: the main result

Turnpike property is true for convex problems

( graph a is convex, u is strongly concave)
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Continuous time systems

System: ẋ ∈ a(x)

Functional: Utility fun. - u(t) = u(x(t)) or u(x(t), ẋ(t))

1. Discounted integral:
∫∞
0

u(t) e−rtdt

2. Undiscounted integral:
∫ T
0

u(t) dt

3. Terminal: lim inft→∞ u(t)

Main focus: Convex Problems

• graph a = {(x, y) : x ∈ Ω, y ∈ a(x)} ⇒ is convex;

• u ⇒ is strongly concave.
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Turnpike Theorems

Problem (P):

ẋ(t) ∈ a(x(t)), a.e. t ≥ 0; (1)

Maximize : J(x) = lim inf
t→∞

u(x(t)). (2)

(i) multi-valued mapping a is defined on convex closed set Da
with non-empty interior, has compact images and is upper

semi-continuous in the Hausdorff metric;

(ii) there exists a bounded solution defined on [0,∞); that is, the

set of solutions denoted by X 6= ∅;

(iii) function u is continuous on Du, where Da ⊂ intDu.
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• u will be assumed to be quasi-concave or strictly

quasi-concave on Du:

Function u is called quasi-concave if for every x1 6= x2

u(λx1 + (1− λ)x2) ≥ min{u(x1), u(x2)}, ∀λ ∈ (0, 1).

If the above inequality is strong, u(x) is called strictly quasi-concave.

• The set of stationary points

M , {x ∈ Ω, 0 ∈ co a(x)}

• x∗ ∈M is optimal stationary point if

u(x∗) = max
x∈M

u(x)
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Class of multi-valued mappings A :

given any set A ⊂ Da

if 0 ∈ co a(A) then 0 ∈ co a(x), ∃x ∈ coA. (A)

Clearly if a has convex images then:

0 ∈ co a(A) ⇒ 0 ∈ a(coA). (Ac)

The class A is quite broad.

1: Convex mappings. Denote the graph of mapping a by

graph a , {(x, y) : x ∈ Da, y ∈ a(x)}.

It is easy to verify that if graph a is a convex set then condition (A) holds.

Mappings with convex graphs are very important in many applications.

For example, macroeconomic models are usually convex.
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2: Linear mappings. Consider linear systems where mapping a is given by

a(x) = {Bx+ Cu; u ∈ U}.

Here B and C are n× n and n× r matrices and U ⊂ Rr is any given set (not

necessarily convex). Again, it is not difficult to verify that condition (A) holds

without imposing any assumptions on matrices B, C and set U.
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Main results

Theorem 0.1: (Upper bound of the functional) Assume that a ∈ A
and function u is quasi-concave. Then

J(x) ≤ u∗ for all solutions x ∈ X. (3)

Theorem 0.2: (Turnpike property) Assume that a ∈ A, function u

is strictly quasi-concave and there exists a unique o.s.p. x∗. Then

any solution x ∈ X satisfying J(x) = u(x∗) (i.e. optimal by

Theorem 0.1) converges to x∗; that is,

lim
t→∞

x(t) = x∗, ∀x ∈ X, J(x) = u(x∗). (4)

Corollary 0.3: Assume that a ∈ A and M is nonempty, convex

and bounded. Then given any strictly quasi-concave function u,

there exists a unique o.s.p. x∗ and (4) holds.
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The proof of Theorem 0.1 is based on the following result:

If a ∈ A then

coP (x) ∩M 6= ∅, ∀ bounded solutions x. (5)

Here P (x) is the set of ω-limit points:

P (x) , {ξ : x(tk)→ ξ for some tk →∞}.

Interesting question: can (5) be satisfied if a /∈ A?

• YES in R2 (we do not have proof for this statement);

• NOT if Rn, n ≥ 3; that is, relation (5) may not be satisfied

for some bounded solution x if a /∈ A.
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Example:

a(x, y, z) = {(−y, x, 1− x2 − y2) : (x, y, z) ∈ R3}.

The solution from an initial point (1, 0, 0) can be obtained as

follows:

x(t) = cos(t), y(t) = sin(t), z(t) = 0, t ∈ [0,∞).

This solution is bounded and its ω-limit set is given by

P = {(x, y, z) : z = 0, x2 + y2 = 1}.

It easy to verify that the set

coP = {(x, y, z) : z = 0, x2 + y2 ≤ 1}

does not contain any stationary point; that is (5) does not hold.

It can also be shown that a /∈ A.
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1. Since a(x, y, z) is a singleton 0 ∈ co a(x, y, z) ∼= 0 = a(x, y, z).

Now let (ẋ, ẏ, ż) = a(x, y, z). Clearly, if x2 + y2 = 1 either ẋ 6= 0 or

ẏ 6= 0; on the other hand, if x2 + y2 < 1 then ż 6= 0. Thus,

0 /∈ a(x, y, z) for all (x, y, z) ∈ coP.

2. Since the images of a are convex (i.e. singleton) we verify

condition (Ac).

Consider the set of two points A = {(1, 0, 0), (−1, 0, 0)} ⊂ P. We

have a(1, 0, 0) = (0, 1, 0), a(−1, 0, 0) = (0,−1, 0), and therefore

(0, 0, 0) =
1

2
a(1, 0, 0) +

1

2
a(−1, 0, 0) ∈ co a(A).

However, (0, 0, 0) /∈ a(coA). Indeed, for any λ ∈ [0, 1] for the points

(xλ, yλ, zλ) = λ (1, 0, 0) + (1− λ)(−1, 0, 0) = (2λ− 1, 0, 0) ∈ coA
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we have

a(xλ, yλ, zλ) = (0, 2λ− 1, 1− (2λ− 1)2) 6= (0, 0, 0), ∀λ ∈ [0, 1]

which means that a /∈ A.
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