Some Glimpses on Convex Subdifferential Calculus

Marco A. López Cerdá
Alicante University

November 24, 2016

1. Introduction

The main objective of this talk is twofold:

- We provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function.

1. Introduction

The main objective of this talk is twofold:

- We provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function.
- We apply this result to derive explicit characterizations for the subdifferential mapping of the supremum function of an arbitrarily indexed family of functions, exclusively in terms of the data functions.

1. Introduction

The main objective of this talk is twofold:

- We provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function.
- We apply this result to derive explicit characterizations for the subdifferential mapping of the supremum function of an arbitrarily indexed family of functions, exclusively in terms of the data functions.
- Some applications to the subdifferential calculus are also given.

1. Introduction

The main objective of this talk is twofold:

- We provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function.
- We apply this result to derive explicit characterizations for the subdifferential mapping of the supremum function of an arbitrarily indexed family of functions, exclusively in terms of the data functions.
- Some applications to the subdifferential calculus are also given.

Summary

Summary

(1) Formula for the optimal set of the relaxed problem.

Summary

(1) Formula for the optimal set of the relaxed problem.
(2) Subdifferential of the supremum function.

Summary

(1) Formula for the optimal set of the relaxed problem.
(2) Subdifferential of the supremum function.
(3) Particular cases:

Summary

(1) Formula for the optimal set of the relaxed problem.
(2) Subdifferential of the supremum function.
(3) Particular cases:
a. Formula for affine functions.
b. Volle's formula.

Summary

(1) Formula for the optimal set of the relaxed problem.
(2) Subdifferential of the supremum function.
(3) Particular cases:
a. Formula for affine functions.
b. Volle's formula.
(9) Calculus rules:

Summary

(1) Formula for the optimal set of the relaxed problem.
(2) Subdifferential of the supremum function.
(3) Particular cases:
a. Formula for affine functions.
b. Volle's formula.
(9) Calculus rules:
a. Subdifferential for the sum function.
b. Weakening assumptions

2. Notations and basic tools

X : (real) separated locally convex space.

2. Notations and basic tools

X : (real) separated locally convex space. X^{*} : dual space.
X and X^{*} are paired in duality by the bilinear form $\left(x^{*}, x\right) \in X^{*} \times X \mapsto\left\langle x, x^{*}\right\rangle$

2. Notations and basic tools

X : (real) separated locally convex space.
X^{*} : dual space.
X and X^{*} are paired in duality by the bilinear form $\left(x^{*}, x\right) \in X^{*} \times X \mapsto\left\langle x, x^{*}\right\rangle$
θ : zero in all the involved spaces.

2. Notations and basic tools

X : (real) separated locally convex space.
X^{*} : dual space.
X and X^{*} are paired in duality by the bilinear form $\left(x^{*}, x\right) \in X^{*} \times X \mapsto\left\langle x, x^{*}\right\rangle$
θ : zero in all the involved spaces.
Given $A, B \subset X$ (or in X^{*}), we consider the operations:

$$
A+B:=\{a+b \mid a \in A, b \in B\}, \quad A+\varnothing:=\varnothing+A:=\varnothing ;
$$

and, if $\Lambda \subset \mathbb{R}$ we set

$$
\Lambda A:=\{\lambda a \mid \lambda \in \Lambda, a \in A\}, \quad \Lambda \varnothing:=\varnothing \Lambda=\varnothing .
$$

co A : convex hull of A, cone A : conic hull of A (not convex; i.e. cone $A=\mathbb{R}_{+} A$), aff A : affine hull of the set A,
co A : convex hull of A,
cone A : conic hull of A (not convex; i.e. cone $A=\mathbb{R}_{+} A$),
aff A : affine hull of the set A,
$\operatorname{int} A$: interior of A,
$\operatorname{cl} A$ and \bar{A} : closure of $A\left(w^{*}\right.$-closure if $\left.A \subset X^{*}\right)$.
ri A : topological relative interior of A (i.e., the interior of A in the topology relative to aff A if aff A is closed, and the empty set otherwise).
co A : convex hull of A,
cone A : conic hull of A (not convex; i.e. cone $A=\mathbb{R}_{+} A$),
aff A : affine hull of the set A,
$\operatorname{int} A$: interior of A,
$\operatorname{cl} A$ and \bar{A} : closure of $A\left(w^{*}\right.$-closure if $\left.A \subset X^{*}\right)$.
$\operatorname{ri} A$: topological relative interior of A (i.e., the interior of A in the topology relative to aff A if aff A is closed, and the empty set otherwise).

$$
\begin{aligned}
& A^{\circ}:=\left\{x^{*} \in X^{*} \mid\left\langle x, x^{*}\right\rangle \geq-1 \forall x \in A\right\}: \text { (one-sided) polar of } A . \\
& A^{-}:=-(\operatorname{cone} A)^{\circ}=\left\{x^{*} \in X^{*} \mid\left\langle x, x^{*}\right\rangle \leq 0 \forall x \in A\right\}: \text { negative }
\end{aligned}
$$ dual cone of A.

$$
A^{\perp}:=\left(-A^{-}\right) \cap A^{-}=\left\{x^{*} \in X^{*} \mid\left\langle x, x^{*}\right\rangle=0 \forall x \in A\right\}:
$$

orthogonal subspace (or annihilator) of A.
co A : convex hull of A,
cone A : conic hull of A (not convex; i.e. cone $A=\mathbb{R}_{+} A$),
aff A : affine hull of the set A,
$\operatorname{int} A$: interior of A,
$\operatorname{cl} A$ and \bar{A} : closure of $A\left(w^{*}\right.$-closure if $\left.A \subset X^{*}\right)$.
$\operatorname{ri} A$: topological relative interior of A (i.e., the interior of A in the topology relative to aff A if aff A is closed, and the empty set otherwise).

$$
\begin{aligned}
& A^{\circ}:=\left\{x^{*} \in X^{*} \mid\left\langle x, x^{*}\right\rangle \geq-1 \forall x \in A\right\}: \text { (one-sided) polar of } A . \\
& A^{-}:=-(\operatorname{cone} A)^{\circ}=\left\{x^{*} \in X^{*} \mid\left\langle x, x^{*}\right\rangle \leq 0 \forall x \in A\right\}: \text { negative }
\end{aligned}
$$ dual cone of A.

$$
A^{\perp}:=\left(-A^{-}\right) \cap A^{-}=\left\{x^{*} \in X^{*} \mid\left\langle x, x^{*}\right\rangle=0 \forall x \in A\right\}:
$$

orthogonal subspace (or annihilator) of A.
$\mathrm{N}_{A}(x):=(A-x)^{-}$, with A convex and $x \in X$: normal cone to A at $x \in A$.
co A : convex hull of A,
cone A : conic hull of A (not convex; i.e. cone $A=\mathbb{R}_{+} A$),
aff A : affine hull of the set A,
$\operatorname{int} A$: interior of A,
$\operatorname{cl} A$ and $\bar{A}:$ closure of $A\left(w^{*}\right.$-closure if $\left.A \subset X^{*}\right)$.
ri A : topological relative interior of A (i.e., the interior of A in the topology relative to aff A if aff A is closed, and the empty set otherwise).

$$
\begin{aligned}
& A^{\circ}:=\left\{x^{*} \in X^{*} \mid\left\langle x, x^{*}\right\rangle \geq-1 \forall x \in A\right\}: \text { (one-sided) polar of } A . \\
& A^{-}:=-(\operatorname{cone} A)^{\circ}=\left\{x^{*} \in X^{*} \mid\left\langle x, x^{*}\right\rangle \leq 0 \forall x \in A\right\}: \text { negative }
\end{aligned}
$$ dual cone of A.

$$
A^{\perp}:=\left(-A^{-}\right) \cap A^{-}=\left\{x^{*} \in X^{*} \mid\left\langle x, x^{*}\right\rangle=0 \forall x \in A\right\}:
$$

orthogonal subspace (or annihilator) of A.
$\mathrm{N}_{A}(x):=(A-x)^{-}$, with A convex and $x \in X$: normal cone to A at $x \in A$.
$A_{\infty}:=\{y \in X \mid x+\lambda y \in X$ for some $x \in X$ and $\forall \lambda \geq 0\}$, with A closed and convex: recession cone .

Given $h: X \longrightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty,+\infty\}$, its (effective) domain , epigraph and graph are:

$$
\begin{aligned}
\operatorname{dom} h & :=\{x \in X \mid h(x)<+\infty\} \\
\text { epi } h & :=\{(x, \alpha) \in X \times \mathbb{R} \mid h(x) \leq \alpha\} \\
\operatorname{gph} h & :=\{(x, h(x)) \in X \times \mathbb{R} \mid x \in \operatorname{dom} h\} .
\end{aligned}
$$

Given $h: X \longrightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty,+\infty\}$, its (effective) domain , epigraph and graph are:

$$
\begin{aligned}
\operatorname{dom} h & :=\{x \in X \mid h(x)<+\infty\} \\
\text { epi } h & :=\{(x, \alpha) \in X \times \mathbb{R} \mid h(x) \leq \alpha\} \\
\operatorname{gph} h & :=\{(x, h(x)) \in X \times \mathbb{R} \mid x \in \operatorname{dom} h\} .
\end{aligned}
$$

h is proper if dom $h \neq \varnothing$ and $h(x)>-\infty$ for all $x \in X$, and is convex iff epi h is convex.

Given $h: X \longrightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty,+\infty\}$, its (effective) domain , epigraph and graph are:

$$
\begin{aligned}
\operatorname{dom} h & :=\{x \in X \mid h(x)<+\infty\} \\
\text { epi } h & :=\{(x, \alpha) \in X \times \mathbb{R} \mid h(x) \leq \alpha\} \\
\operatorname{gph} h & :=\{(x, h(x)) \in X \times \mathbb{R} \mid x \in \operatorname{dom} h\} .
\end{aligned}
$$

h is proper if dom $h \neq \varnothing$ and $h(x)>-\infty$ for all $x \in X$, and is convex iff epi h is convex.
The lsc convex hull of h is the lsc convex function $\overline{\operatorname{co}} h: X \longrightarrow \overline{\mathbb{R}}$ such that

$$
\mathrm{epi}(\overline{\mathrm{co}} h)=\overline{\mathrm{co}}(\mathrm{epi} h)
$$

Given $h: X \longrightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{-\infty,+\infty\}$, its (effective) domain , epigraph and graph are:

$$
\begin{aligned}
\operatorname{dom} h & :=\{x \in X \mid h(x)<+\infty\} \\
\text { epi } h & :=\{(x, \alpha) \in X \times \mathbb{R} \mid h(x) \leq \alpha\} \\
\operatorname{gph} h & :=\{(x, h(x)) \in X \times \mathbb{R} \mid x \in \operatorname{dom} h\} .
\end{aligned}
$$

h is proper if dom $h \neq \varnothing$ and $h(x)>-\infty$ for all $x \in X$, and is convex iff epi h is convex.
The lsc convex hull of h is the lsc convex function $\overline{\operatorname{co}} h: X \longrightarrow \overline{\mathbb{R}}$ such that

$$
\mathrm{epi}(\overline{\mathrm{co}} h)=\overline{\mathrm{co}}(\mathrm{epi} h)
$$

$\Gamma(X)$: proper lsc convex functions.

$$
h^{*}\left(x^{*}\right):=\sup \left\{\left\langle x, x^{*}\right\rangle-h(x) \mid x \in X\right\}: \text { conjugate of } h .
$$

$h^{*}\left(x^{*}\right):=\sup \left\{\left\langle x, x^{*}\right\rangle-h(x) \mid x \in X\right\}:$ conjugate of h. $h^{* *}(x):=\sup \left\{\left\langle x, x^{*}\right\rangle-h^{*}\left(x^{*}\right) \mid x^{*} \in X^{*}\right\}:$ bi-conjugate of h $\left(h^{* *}: X \longrightarrow \overline{\mathbb{R}}\right)$.
$h^{*}\left(x^{*}\right):=\sup \left\{\left\langle x, x^{*}\right\rangle-h(x) \mid x \in X\right\}:$ conjugate of h. $h^{* *}(x):=\sup \left\{\left\langle x, x^{*}\right\rangle-h^{*}\left(x^{*}\right) \mid x^{*} \in X^{*}\right\}:$ bi-conjugate of h ($h^{* *}: X \longrightarrow \overline{\mathbb{R}}$).
We have $\left\{h \in \overline{\mathbb{R}}^{X}: h=h^{* *}\right\}=\Gamma(X) \cup\{+\infty\}^{X} \cup\{-\infty\}^{X}$. Moreover, $h^{* *} \leq \overline{\mathrm{co}} h$, and the equality holds if h admits a continuous affine minorant.
$h^{*}\left(x^{*}\right):=\sup \left\{\left\langle x, x^{*}\right\rangle-h(x) \mid x \in X\right\}:$ conjugate of h. $h^{* *}(x):=\sup \left\{\left\langle x, x^{*}\right\rangle-h^{*}\left(x^{*}\right) \mid x^{*} \in X^{*}\right\}:$ bi-conjugate of h $\left(h^{* *}: X \longrightarrow \overline{\mathbb{R}}\right.$).
We have $\left\{h \in \overline{\mathbb{R}}^{X}: h=h^{* *}\right\}=\Gamma(X) \cup\{+\infty\}^{X} \cup\{-\infty\}^{X}$. Moreover, $h^{* *} \leq \overline{\mathrm{co}} h$, and the equality holds if h admits a continuous affine minorant.
$\partial_{\varepsilon} h(x):=\left\{x^{*} \in X^{*} \mid h(y)-h(x) \geq\left\langle y-x, x^{*}\right\rangle-\varepsilon \forall y \in X\right\}:$
ε-subdifferential of h at $x \in h^{-1}(\mathbb{R})(\varepsilon \geq 0)$.
$\partial_{\varepsilon} h(x)$ is a w^{*}-closed convex set, and if h is convex, then

$$
\partial_{\varepsilon} h(x) \neq \varnothing \forall \varepsilon>0 \Longleftrightarrow h \text { is lsc at } x .
$$

3. Optimal set for the relaxed problem

Let $h: X \rightarrow \overline{\mathbb{R}}$. The relaxed problem associated with
$(\mathcal{P}): \quad$ minimize $h(x)$ s.t. $x \in X$

3. Optimal set for the relaxed problem

Let $h: X \rightarrow \overline{\mathbb{R}}$. The relaxed problem associated with

$$
(\mathcal{P}): \quad \text { minimize } h(x) \quad \text { s.t. } x \in X
$$

is classically defined as

$$
\left(\mathcal{P}^{\prime}\right): \quad \text { minimize } h^{* *}(x) \quad \text { s.t. } x \in X .
$$

3. Optimal set for the relaxed problem

Let $h: X \rightarrow \overline{\mathbb{R}}$. The relaxed problem associated with

$$
(\mathcal{P}): \quad \text { minimize } h(x) \quad \text { s.t. } x \in X
$$

is classically defined as

$$
\left(\mathcal{P}^{\prime}\right): \quad \text { minimize } h^{* *}(x) \quad \text { s.t. } x \in X .
$$

The optimal values of both problems coincide:

$$
\inf _{X} h=\inf _{X} h^{* *}=: m \in \overline{\mathbb{R}} .
$$

3. Optimal set for the relaxed problem

Let $h: X \rightarrow \overline{\mathbb{R}}$. The relaxed problem associated with

$$
(\mathcal{P}): \quad \text { minimize } h(x) \quad \text { s.t. } x \in X
$$

is classically defined as

$$
\left(\mathcal{P}^{\prime}\right): \quad \text { minimize } h^{* *}(x) \quad \text { s.t. } x \in X .
$$

The optimal values of both problems coincide:

$$
\inf _{X} h=\inf _{X} h^{* *}=: m \in \overline{\mathbb{R}} .
$$

Our purpose is to obtain the optimal set of $\left(\mathcal{P}^{\prime}\right)$, i.e. $\operatorname{argmin} h^{* *}$, in terms of the approximate solutions of (\mathcal{P}), i.e. $\varepsilon-\operatorname{argmin} h$.

3. Optimal set for the relaxed problem

Let $h: X \rightarrow \overline{\mathbb{R}}$. The relaxed problem associated with

$$
(\mathcal{P}): \quad \text { minimize } h(x) \quad \text { s.t. } x \in X
$$

is classically defined as

$$
\left(\mathcal{P}^{\prime}\right): \quad \text { minimize } h^{* *}(x) \quad \text { s.t. } x \in X .
$$

The optimal values of both problems coincide:

$$
\inf _{X} h=\inf _{X} h^{* *}=: m \in \overline{\mathbb{R}} .
$$

Our purpose is to obtain the optimal set of $\left(\mathcal{P}^{\prime}\right)$, i.e. $\operatorname{argmin} h^{* *}$, in terms of the approximate solutions of (\mathcal{P}), i.e. $\varepsilon-\operatorname{argmin} h$. For convenience we set $\varepsilon-\operatorname{argmin} h=\varnothing$ for all $\varepsilon \geq 0$ whenever $m \notin \mathbb{R}$.

Next we present the main result in this section.

Next we present the main result in this section.

Theorem 1

For any function $h: X \rightarrow \overline{\mathbb{R}}$ such that $\operatorname{dom} h^{*} \neq \varnothing$, one has

$$
\operatorname{argmin} h^{* *}=\bigcap_{\substack{\varepsilon>0 \\ x^{*} \in \operatorname{dom} h^{*}}} \overline{\operatorname{co}}\left((\varepsilon-\operatorname{argmin} h)+\left\{x^{*}\right\}^{-}\right) .
$$

If cone $\left(\operatorname{dom} h^{*}\right)$ is w^{*}-closed or ri$\left(\operatorname{cone}\left(\operatorname{dom} h^{*}\right)\right) \neq \varnothing$, then

$$
\operatorname{argmin} h^{* *}=\bigcap_{\varepsilon>0} \overline{\operatorname{co}}\left((\varepsilon-\operatorname{argmin} h)+\left(\operatorname{dom} h^{*}\right)^{-}\right) .
$$

In particular, if cone $\left.\left(\operatorname{dom} h^{*}\right)\right)=X^{*}$, then

$$
\operatorname{argmin} h^{* *}=\bigcap_{\varepsilon>0} \overline{\mathrm{CO}}(\varepsilon-\operatorname{argmin} h) .
$$

Now we proceed with a relevant application of Theorem 1 to the subdifferential calculus.

Now we proceed with a relevant application of Theorem 1 to the subdifferential calculus.

Theorem 2

For any function $h: X \rightarrow \overline{\mathbb{R}}$ such that $\operatorname{dom} h^{*} \neq \varnothing$, one has for all $x^{*} \in X^{*}$,

$$
\partial h^{*}\left(x^{*}\right)=\bigcap_{\substack{\varepsilon>0 \\ u^{*} \in \operatorname{dom} h^{*}}} \overline{\operatorname{co}}\left(\left(\partial_{\varepsilon} h\right)^{-1}\left(x^{*}\right)+\left\{u^{*}-x^{*}\right\}^{-}\right) .
$$

If cone $\left(\left(\operatorname{dom} h^{*}\right)-x^{*}\right)$ is w^{*}-closed or ri $\left(\operatorname{cone}\left(\left(\operatorname{dom} h^{*}\right)-x^{*}\right)\right) \neq \varnothing$, then

$$
\partial h^{*}\left(x^{*}\right)=\bigcap_{\varepsilon>0} \overline{\mathrm{co}}\left(\left(\partial_{\varepsilon} h\right)^{-1}\left(x^{*}\right)+\mathbf{N}_{\mathrm{dom} h^{*}}\left(x^{*}\right)\right) .
$$

4. Subdifferential of the supremum function

Theorem 3

Given $\left\{f_{t}, t \in T\right\} \subset \overline{\mathbb{R}}^{X}, T \neq \varnothing$, consider the supremum function $f:=\sup _{t \in T} f_{t}$. Assume that $\operatorname{dom} f \neq \varnothing$ and that

$$
\begin{equation*}
f^{* *} \equiv\left(\sup _{t \in T} f_{t}\right)^{* *}=\sup _{t \in T} f_{t}^{* *} \tag{CC}
\end{equation*}
$$

Then, at every $x \in X$, we have

$$
\partial f(x)=\bigcap_{\varepsilon>0, z \in \operatorname{dom} f} \overline{\operatorname{co}}\left(\bigcup_{t \in T_{\varepsilon}(x)} \partial_{\varepsilon} f_{t}(x)+\{z-x\}^{-}\right)
$$

where $T_{\varepsilon}(x):=\left\{t \in T: f_{t}(x) \geq f(x)-\varepsilon\right\}$ if $f(x) \in \mathbb{R}$ and $T_{\varepsilon}(x)=\varnothing$ if $f(x) \notin \mathbb{R}$.

Theorem 3

If, moreover, cone $\operatorname{co}(\operatorname{dom} f-x)$ is closed or $\operatorname{ri}($ cone $\operatorname{co}(\operatorname{dom} f-x)) \neq \varnothing$, then

$$
\partial f(x)=\bigcap_{\varepsilon>0} \overline{\operatorname{co}}\left(\bigcup_{t \in T_{\varepsilon}(x)} \partial_{\varepsilon} f_{t}(x)+\mathrm{N}_{\operatorname{dom} f}(x)\right)
$$

Next we present alternative characterizations of $\mathrm{N}_{\operatorname{dom} f}(x)$:

Theorem 3

If, moreover, cone co($\operatorname{dom} f-x)$ is closed or
ri $($ cone $\operatorname{co}(\operatorname{dom} f-x)) \neq \varnothing$, then

$$
\partial f(x)=\bigcap_{\varepsilon>0} \overline{\operatorname{co}}\left(\bigcup_{t \in T_{\varepsilon}(x)} \partial_{\varepsilon} f_{t}(x)+\mathrm{N}_{\operatorname{dom} f}(x)\right)
$$

Next we present alternative characterizations of $\mathrm{N}_{\operatorname{dom} f}(x)$:

$$
\begin{aligned}
x^{*} & \in \mathrm{~N}_{\operatorname{dom} f}(x) \Longleftrightarrow\left(x^{*},\left\langle x^{*}, x\right\rangle\right) \in\left[\overline{\operatorname{co}}\left(\cup_{t \in T} \operatorname{gph} f_{t}^{*}\right)\right]_{\infty} \\
& \Longleftrightarrow\left(x^{*},\left\langle x^{*}, z\right\rangle\right) \in\left[\overline{\operatorname{co}}\left(\cup_{t \in T} \operatorname{epi} f_{t}^{*}\right)\right]_{\infty} \\
& \Longleftrightarrow\left(x^{*},\left\langle x^{*}, z\right\rangle\right) \in\left(\operatorname{epi} f^{*}\right)_{\infty} \\
& \Longleftrightarrow\left(x^{*},\left\langle x^{*}, z\right\rangle\right) \in \operatorname{epi}\left(\sigma_{\operatorname{dom} f}\right) .
\end{aligned}
$$

Let us define now

$$
\mathcal{F}_{x^{*}}:=\left\{\begin{array}{l|l}
L \subset X^{*} & \begin{array}{c}
L \text { is a finite-dimensional linear subspace } \\
\text { such that } x^{*} \in L
\end{array}
\end{array}\right\}
$$

Theorem 5 (HaLoZa'08)

Given nonempty family $\left\{f_{t}, t \in T\right\} \subset \overline{\mathbb{R}}^{X}$, consider the supremum function $f:=\sup _{t \in T} f_{t}$, and assume that $\operatorname{dom} f \neq \varnothing$ and condition (CC) holds, i.e.

$$
f^{* *}=\sup _{t \in T} f_{t}^{* *}
$$

Then, for every $x \in X$,

$$
\partial f(x)=\bigcap_{\varepsilon>0, L \in \mathcal{F}_{x}} \operatorname{cl}\left(\operatorname{co}\left(\bigcup_{t \in T_{\varepsilon}(x)} \partial_{\varepsilon} f_{t}(x)\right)+\mathrm{N}_{L \cap \operatorname{dom} f}(x)\right)
$$

Corollary 1

Assume that $T \neq \varnothing$ and $f(x):=\sup \left\{\left\langle a_{t}^{*}, x\right\rangle-\beta_{t} \mid t \in T\right\}$, with $a_{t}^{*} \in X^{*}$ and $\beta_{t} \in \mathbb{R}$. Then, for every $x \in X$ we have

$$
\partial f(x)=\bigcap_{L \in \mathcal{F}_{x}, \varepsilon>0} \operatorname{cl}\left(\operatorname{co}\left\{a_{t}^{*} \mid t \in T_{\varepsilon}(x)\right\}+B_{L}\right),
$$

where
$x^{*} \in B_{L} \Leftrightarrow\left(x^{*},\left\langle x^{*}, x\right\rangle\right) \in\left[\overline{\mathrm{Co}}\left(\left(L^{\perp} \times\{0\}\right) \cup\left\{\left(a_{t}^{*}, \beta_{t}\right), t \in T\right\}\right)\right]_{\infty}$

Corollary 2

Let $\left\{f_{t}: X \rightarrow \overline{\mathbb{R}} \mid t \in T\right\}$ be a non-empty family of convex functions and set $f:=\sup _{t \in T} f_{t}$. Assume that one of the following conditions holds:
(1) - All the functions f_{t} with $t \in T$ are lsc.
(2) $-\exists x_{0} \in \operatorname{dom} f$ such that f_{t} is continuous at $x_{0}, \forall t \in T$.
(3) $-T:=\{1, \ldots, k, k+1\}$ and $\exists x_{0} \in \operatorname{dom} f_{k+1} \cap\left(\bigcap_{i=1}^{k} \operatorname{dom} f_{i}\right)$
such that f_{1}, \ldots, f_{k} are continuous at x_{0}.
(4) - $X=\mathbb{R}^{n}$ and $\operatorname{dom} f \cap\left(\cap_{t \in T} \operatorname{ri}\left(\operatorname{dom} f_{t}\right)\right)$ is nonempty.

Then, (CC) holds and for every $x \in X$

$$
\partial f(x)=\bigcap_{L \in \mathcal{F}_{x}, \varepsilon>0} \mathrm{cl}\left(\operatorname{co}\left(\underset{t \in T_{\varepsilon}(x)}{\bigcup} \partial_{\varepsilon} f_{t}(x)\right)+\mathrm{N}_{L \cap \operatorname{dom} f}(x)\right) .
$$

Theorem

Let $\left\{f_{t}: X \rightarrow \overline{\mathbb{R}} \mid t \in T\right\}$ be a non-empty family of convex functions, and set $f:=\sup _{t \in T} f_{t}$. Assume that $\operatorname{ri}(\operatorname{dom} f) \neq \varnothing$. Then, we have

$$
\partial f(z)=\bigcap_{\varepsilon>0} \mathrm{cl}\left(\overline{\mathrm{co}}\left(\bigcup_{t \in T_{\varepsilon}(z)} \partial_{\varepsilon} f_{t}(z)\right)+\mathrm{N}_{\operatorname{dom} f}(z)\right) .
$$

Theorem (Volle [22], for normed spaces)

If, additionally, f is finite and continuous at $z \in X$, then

$$
\partial f(z)=\bigcap_{\varepsilon>0} \overline{\operatorname{co}}\left(\bigcup_{t \in T_{\varepsilon}(z)} \partial_{\varepsilon} f_{t}(z)\right)
$$

Proof. f is finite and continuous at z and so, $z \in \operatorname{int}(\operatorname{dom} f)$, entailing $\mathrm{N}_{\operatorname{dom} f}(z)=\{\theta\}$. Further, as $z \in \cap_{t \in T} \operatorname{int}\left(\operatorname{dom} f_{t}\right)$, condition (2) of Corollary 2 yields $\bar{f}=\sup _{t \in T} \bar{f}_{t}$, and so the conclusion follows.

4. Other calculus rules

- X (separated) real locally convex space.
- $f, g: X \rightarrow \overline{\mathbb{R}}$ convex functions.

Our formula for the subdifferential of the supremum also yields calculus rules for some other operations, as the sum $g+f$.

Theorem

Assume that the following holds

$$
\overline{g+f}=\bar{g}+\bar{f}
$$

Then, for every $z \in X$ we have

$$
\partial(g+f)(z)=\bigcap_{\varepsilon>0} \operatorname{cl}\left(\partial_{\varepsilon} g(z)+\partial_{\varepsilon} f(z)\right) .
$$

If f and g are lsc we recover the Hiriart-Urruty \& Phelps formula.

Now we recover the Moreau-Rockafellar result:

Theorem

Let $f, g: X \rightarrow \overline{\mathbb{R}}$ be convex functions. Assume that f is finite and continuous at x_{0} for some $x_{0} \in \operatorname{dom} g$. Then

$$
\overline{g+f}=\bar{g}+\bar{f}
$$

and

$$
\partial(f+g)(z)=\partial f(z)+\partial g(z)
$$

Weakening assumptions
Consider two convex functions $f, g: X \rightarrow \mathbb{R} \cup\{ \pm \infty\}$.

1) If X is finite-dimensional and

$$
\begin{equation*}
\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\operatorname{dom} g) \neq \varnothing \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\partial(f+g)=\partial f+\partial g \tag{2}
\end{equation*}
$$

2) If X is a (real) separated locally convex space, (2) holds if

$$
\begin{equation*}
\operatorname{dom} f \cap \operatorname{cont} g \neq \varnothing \text { OR cont } f \cap \operatorname{dom} g \neq \varnothing \tag{3}
\end{equation*}
$$

3) (2) also follows replacing (1) by
g is polyhedral AND $\operatorname{dom} g \cap \operatorname{ri}(\operatorname{dom} f) \neq \varnothing$.
4) If $f, g \in \Gamma(X)$, we have

$$
\begin{equation*}
\partial(f+g)(x)=\bigcap_{\varepsilon>0} \operatorname{cl}\left(\partial_{\varepsilon} f(x)+\partial_{\varepsilon} g(x)\right) \tag{4}
\end{equation*}
$$

The following formula uses the weaker condition that the domains of the involved functions overlap quasi-sufficiently.

The following formula uses the weaker condition that the domains of the involved functions overlap quasi-sufficiently. The required assumptions are at an intermediate level of generality between the Moreau-Rockafellar's (2) and the Hiriart-Urruty and Phelps formulas (4).

The following formula uses the weaker condition that the domains of the involved functions overlap quasi-sufficiently. The required assumptions are at an intermediate level of generality between the Moreau-Rockafellar's (2) and the Hiriart-Urruty and Phelps formulas (4).

Theorem

Let f and g be two convex functions defined on X and satisfying $\overline{f+g}=\bar{f}+g$. Given $x \in X$ such that $g(x) \in \mathbb{R}$, we assume either
(i) $\mathbb{R}_{+}($epi $g-(x, g(x)))$ is closed or
(ii) $\operatorname{dom} f \cap \operatorname{ri}(\operatorname{dom} g) \neq \varnothing$ and $g_{\mid \operatorname{aff}(\operatorname{dom} g)}$ is continuous on ri(domg).
Then

$$
\begin{equation*}
\partial(f+g)(x)=\bigcap_{\varepsilon>0} \operatorname{cl}\left(\partial_{\varepsilon} f(x)+\partial g(x)\right) \tag{5}
\end{equation*}
$$

Conditions (1) $\overline{f+g}=\bar{f}+g$ and (2) $\overline{f+g}=\bar{f}+\bar{g}$ are not comparable in general: On one hand, for the case $f=g$, condition (2) reads $2 \bar{f}=\bar{f}+\bar{f}$, which is obviously always true, while the validity of (1) requires the lsc of f. On the other hand, (1) and (2) are equivalent whenever function g is lsc.

Conditions (1) $\overline{f+g}=\bar{f}+g$ and (2) $\overline{f+g}=\bar{f}+\bar{g}$ are not comparable in general: On one hand, for the case $f=g$, condition (2) reads $2 \bar{f}=\bar{f}+\bar{f}$, which is obviously always true, while the validity of (1) requires the lsc of f. On the other hand, (1) and (2) are equivalent whenever function g is lsc. This other result can be found in [CoHaLo'16].

Theorem

If $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\operatorname{dom} g) \neq \varnothing$, and $f_{\mid \operatorname{aff}(\operatorname{dom} f)}$ and $g_{\mid \operatorname{aff}(\operatorname{dom} g)}$ are respectively continuous on $\operatorname{ri}(\operatorname{dom} f)$ and $\operatorname{ri}(\operatorname{dom} g)$, we have, for every $x \in X$,

$$
\partial(f+g)(x)=\operatorname{cl}(\partial f(x)+\partial g(x)) .
$$

In addition, if one of the subdifferential sets of f or g at x is locally compact, then this last formula reduces to the exact rule

$$
\partial(f+g)(x)=\partial f(x)+\partial g(x)
$$

References

(1] A. Brøndsted: On the subdifferential of the supremum of two convex functions, Math. Scand., 31 (1972), 225-230.

嗇 [2] R. Correa, A. Hantoute, M.A. López: Weaker conditions for the subdifferential calculus of convex functions, J. Funct. Anal., 271 (2016), 1177-1212.

- [3] A. Hantoute, M.A. López: A complete characterization of the subdifferential set of the supremum of an arbitrary family of convex functions, J. Convex Anal., 15 (2008), 831-858.

囦 [4] A. Hantoute, M.A. López, C. Zălinescu: Subdifferential calculus rules in convex analysis: A unifying approach via pointwise supremum functions, SIAM J. Optim. 19 (2008), 863-882.
[5] J.-B. Hiriart-Urruty, R.R. Phelps: Subdifferential calculus using ε-subdifferentials, J. Funct. Anal., 118 (1993), 154-166.
: [6] J.-B. Hiriart-Urruty, M. Moussaoui, A. Seeger, M. Volle: Subdifferential calculus without qualification conditions, using approximate subdifferentials: A survey, Nonlinear Anal., 24 (1995), 1727-1754.
[7] [7] A.D. Ioffe, V.L. Levin: Subdifferentials of convex functions, Trudy Moskov Mat. Obshch, 26 (1972) 3-73 (Russian).
(8] A.D. Ioffe, V.H. Tikhomirov: Theory of Extremal Problems, Studies in Mathematics and its Applications, Vol. 6, North-Holland, Amsterdam, 1979.
(1) [9] F. Jules, M. Lassonde: Formulas for subdifferentials of sums of convex functions, J. Convex Anal., 9 (2002), 519-533.
[10] V.L. Levin: An application of Helly's theorem in convex programming, problems of best approximation and related questions. Mat. Sb., Nov. Ser. 79(121) (1969), 250-263. English transl.: Math. USSR, Sb. 8, 235-247.
[1] [11] J.-J. Moreau: Fonctionnelles convexes, Rome: Instituto Poligrafico e Zecca dello Stato, 2003.
[12] J.-P. Penot: Subdifferential calculus without qualification assumptions, J. Convex Anal., 3 (1996), 207-219.
(13] R.R. Phelps: Convex functions, monotone operators and differentiability, 2nd ed., Lecture Notes in Mathematics, Vol 1364, Springer-Verlag, Berlin (1993).
[14] B.N. Pschenichnyi: Convex programming in a normalized space, Kibernetika, 5 (1965), 46-54 (Russian); translated as Cybernetics 1 (1965) no. 5, 46-57 (1966).
[15] R.T. Rockafellar: Directionally Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc., 39 (1979), 331-355.
[[16] R.T. Rockafellar: Convex Analysis, Princeton University Press, Princeton, N.J., 1970.

嗇 [17] R.T. Rockafellar: Conjugate Duality and Optimization, in: CBMS Regional Conference Series in Applied Mathematics 16, SIAM VI, Philadelphia, Pa. (1974).

國 [18] V.N. Solov'ev: The subdifferential and the directional derivatives of the maximum of a family of convex functions, Izvestiya RAN: Ser. Mat., 65 (2001), 107-132.
[19] L. Thibault: Sequential convex subdifferential calculus and sequential Lagrange multipliers, SIAM J. Control Optim., 35 (1997), 1434-1444.
: [20] V.M. Tikhomirov: Analysis II, Convex Analysis and Approximation Theory, RX Gamkrelidze (Ed.), Encyclopedia of Mathematics Vol 14 (1987).
[21] M. Valadier: Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A39-A42.
[22] M. Volle: Sous-différentiel d'une enveloppe supérieure de fonctions convexes, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 845-849.
[23] M. Volle: On the subdifferential of an upper envelope of convex functions, Acta Math. Vietnam., 19 (1994), 137-148.
[24] C. Zalinescu: Stability for a class of nonlinear optimization problems and applications, in Nonsmooth optimization and related topics (Erice, 1988), 437-458, Ettore Majorana Internat. Sci. Ser. Phys. Sci., 43, Plenum, New York, 1989.

圊 [25] C. Zalinescu: On several results about convex set functions, J. Math. Anal. Appl., 328 (2007), 1451-1470.
(26] C. Zalinescu: Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002.

New references:

击 J.-B. Hiriart-Urruty, M.A. López, M. Volle: The ε-strategy in variational analysis, 2009.

囯 M.A. López, M. Volle: A formula for the set of optimal solutions of a relaxed minimization problem. Applications to subdifferential calculus, J. Convex Anal., to appear.

