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1. Introduction
The main objective of this talk is twofold:

We provide a general formula for the optimal set of a
relaxed minimization problem in terms of the approximate
minima of the data function.

We apply this result to derive explicit characterizations for
the subdifferential mapping of the supremum function of an
arbitrarily indexed family of functions, exclusively in terms
of the data functions.
Some applications to the subdifferential calculus are also
given.
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Summary

1 Formula for the optimal set of the relaxed problem.
2 Subdifferential of the supremum function.
3 Particular cases:

a. Formula for affine functions.
b. Volle’s formula.

4 Calculus rules:

a. Subdifferential for the sum function.
b. Weakening assumptions ....
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2. Notations and basic tools

X : (real) separated locally convex space.

X� : dual space.
X and X� are paired in duality by the bilinear form
(x�, x) 2 X� �X 7! hx, x�i
θ : zero in all the involved spaces.
Given A, B � X (or in X�), we consider the operations:

A+ B := fa+ b j a 2 A, b 2 Bg, A+∅ := ∅+A := ∅;

and, if Λ � R we set

ΛA := fλa j λ 2 Λ, a 2 Ag, Λ∅ := ∅Λ = ∅.
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co A : convex hull of A,
cone A : conic hull of A (not convex; i.e. cone A = R+A),
aff A : affine hull of the set A,

int A : interior of A,
cl A and A : closure of A (w�–closure if A � X�).
ri A : topological relative interior of A (i.e., the interior of A in the
topology relative to aff A if aff A is closed, and the empty set
otherwise).
A� := fx� 2 X� j hx, x�i � �1 8x 2 Ag : (one-sided) polar of A.
A� := � (cone A)� = fx� 2 X� j hx, x�i � 0 8x 2 Ag : negative

dual cone of A.
A? := (�A�) \A� = fx� 2 X� j hx, x�i = 0 8x 2 Ag :

orthogonal subspace (or annihilator) of A.
NA(x) := (A� x)�, with A convex and x 2 X: normal cone to

A at x 2 A.
A∞ := fy 2 X j x+ λy 2 X for some x 2 X and 8λ � 0g , with

A closed and convex: recession cone .
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Given h : X �! R := R[ f�∞,+∞g, its (effective) domain ,
epigraph and graph are:

dom h := fx 2 X j h(x) < +∞g,
epi h := f(x, α) 2 X�R j h(x) � αg,

gph h := f(x, h(x)) 2 X�R j x 2 dom hg.

h is proper if dom h 6= ∅ and h(x) > �∞ for all x 2 X, and is
convex iff epi h is convex.
The lsc convex hull of h is the lsc convex function coh : X �! R

such that
epi(coh) = co (epi h) .

Γ(X) : proper lsc convex functions.
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h�(x�) := supfhx, x�i � h(x) j x 2 Xg : conjugate of h.

h��(x) := supfhx, x�i � h�(x�) j x� 2 X�g : bi-conjugate of h
(h�� : X �! R).

We have fh 2 R
X : h = h��g = Γ(X) [ f+∞gX [ f�∞gX.

Moreover, h�� � coh, and the equality holds if h admits a
continuous affine minorant.
∂εh(x) := fx� 2 X� j h(y)� h(x) � hy� x, x�i � ε 8y 2 Xg :
ε�subdifferential of h at x 2 h�1(R) (ε � 0).
∂εh(x) is a w�–closed convex set, and if h is convex, then

∂εh(x) 6= ∅ 8ε > 0 () h is lsc at x.
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3. Optimal set for the relaxed problem
Let h : X ! R. The relaxed problem associated with

(P) : minimize h(x) s.t. x 2 X

is classically defined as

(P 0) : minimize h��(x) s.t. x 2 X.

The optimal values of both problems coincide:

inf
X

h = inf
X

h�� =: m 2 R.

Our purpose is to obtain the optimal set of (P 0), i.e. argmin h��,
in terms of the approximate solutions of (P), i.e. ε� argmin h.
For convenience we set ε� argmin h = ∅ for all ε � 0
whenever m /2 R.
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Next we present the main result in this section.

Theorem 1

For any function h : X ! R such that dom h� 6= ∅, one has

argmin h�� =
\
ε>0

x�2dom h�

co
�
(ε� argmin h) + fx�g�

�
.

If cone(dom h�) is w��closed or ri(cone(dom h�)) 6= ∅, then

argmin h�� =
\
ε>0

co
�
(ε� argmin h) + (dom h�)�

�
.

In particular, if cone(dom h�)) = X� , then

argmin h�� =
\
ε>0

co (ε� argmin h) .
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Now we proceed with a relevant application of Theorem 1 to
the subdifferential calculus.

Theorem 2

For any function h : X ! R such that dom h� 6= ∅, one has for all
x� 2 X�,

∂h�(x�) =
\
ε>0

u�2dom h�

co
�
(∂εh)�1(x�) + fu� � x�g�

�
.

If cone ((dom h�)� x�) is w��closed or
ri(cone((dom h�)� x�)) 6= ∅, then

∂h�(x�) =
\
ε>0

co
�
(∂εh)�1(x�) +Ndom h�(x�)

�
.

November 24, 2016 WoMBaT - RMIT- Melbourne



Now we proceed with a relevant application of Theorem 1 to
the subdifferential calculus.

Theorem 2

For any function h : X ! R such that dom h� 6= ∅, one has for all
x� 2 X�,

∂h�(x�) =
\
ε>0

u�2dom h�

co
�
(∂εh)�1(x�) + fu� � x�g�

�
.

If cone ((dom h�)� x�) is w��closed or
ri(cone((dom h�)� x�)) 6= ∅, then

∂h�(x�) =
\
ε>0

co
�
(∂εh)�1(x�) +Ndom h�(x�)

�
.

November 24, 2016 WoMBaT - RMIT- Melbourne



4. Subdifferential of the supremum function

Theorem 3

Given fft, t 2 Tg � R
X, T 6= ∅, consider the supremum function

f := supt2T ft. Assume that dom f 6= ∅ and that

f �� �
 

sup
t2T

ft

!��
= sup

t2T
f ��t . (CC)

Then, at every x 2 X, we have

∂f (x) =
\

ε>0, z2dom f

co

0@ [
t2Tε(x)

∂εft(x) + fz� xg�
1A ,

where Tε(x) := ft 2 T : ft(x) � f (x)� εg if f (x) 2 R and
Tε(x) = ∅ if f (x) /2 R.
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Theorem 3
If, moreover, cone co(dom f � x) is closed or
ri(cone co(dom f � x)) 6= ∅, then

∂f (x) =
\
ε>0

co

0@ [
t2Tε(x)

∂εft(x) +Ndom f (x)

1A .

Next we present alternative characterizations of Ndom f (x) :

x� 2 Ndom f (x)() (x�, hx�, xi) 2 [co ([t2T gph f �t )]∞
() (x�, hx�, zi) 2 [co ([t2T epi f �t )]∞
() (x�, hx�, zi) 2 (epi f �)∞

() (x�, hx�, zi) 2 epi(σdom f ).
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Let us define now

Fx� :=
�

L � X�
���� L is a finite-dimensional linear subspace

such that x� 2 L

�
,

Theorem 5 (HaLoZa’08)

Given nonempty family fft, t 2 Tg � R
X, consider the supremum

function f := supt2T ft, and assume that dom f 6= ∅ and condition
(CC) holds, i.e.

f �� = sup
t2T

f ��t .

Then, for every x 2 X,

∂f (x) =
\

ε>0, L2Fx
cl
�

co
�S

t2Tε(x) ∂εft(x)
�
+NL\dom f (x)

�
.
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Corollary 1

Assume that T 6= ∅ and f (x) := supfha�t , xi � βt j t 2 Tg, with
a�t 2 X� and βt 2 R. Then, for every x 2 X we have

∂f (x) =
T

L2Fx,ε>0
cl (cofa�t j t 2 Tε(x)g+ BL) ,

where

x� 2 BL , (x�, hx�, xi) 2
h
co
�
(L? � f0g) [ f(a�t , βt), t 2 Tg

�i
∞

.
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Corollary 2

Let fft : X ! R j t 2 Tg be a non-empty family of convex functions
and set f := supt2T ft. Assume that one of the following conditions
holds:
(1) - All the functions ft with t 2 T are lsc.
(2) - 9x0 2 dom f such that ft is continuous at x0, 8t 2 T.
(3) - T := f1, . . . , k, k+ 1g and 9x0 2 dom fk+1 \ (

Tk
i=1 dom fi)

such that f1, . . . , fk are continuous at x0.
(4) - X = Rn and dom f \ (\t2T ri(dom ft)) is nonempty.
Then, (CC) holds and for every x 2 X

∂f (x) =
\

L2Fx , ε>0

cl

 
co

 S
t2Tε(x)

∂εft(x)

!
+NL\dom f (x)

!
.
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Theorem

Let fft : X ! R j t 2 Tg be a non-empty family of convex functions,
and set f := supt2T ft. Assume that ri(dom f ) 6= ∅. Then, we have

∂f (z) =
T

ε>0 cl
�

co (
S

t2Tε(z) ∂εft(z)) +Ndom f (z)
�

.

Theorem (Volle [22], for normed spaces)

If, additionally, f is finite and continuous at z 2 X, then

∂f (z) =
T

ε>0 co (
S

t2Tε(z) ∂εft(z)).

Proof. f is finite and continuous at z and so, z 2 int(dom f ),
entailing Ndom f (z) = fθg. Further, as z 2 \t2T int(dom ft),
condition (2) of Corollary 2 yields f = supt2T f t, and so the
conclusion follows.
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4. Other calculus rules

X (separated) real locally convex space.
f , g : X ! R convex functions.

Our formula for the subdifferential of the supremum also yields
calculus rules for some other operations, as the sum g+ f .

Theorem
Assume that the following holds

g+ f = g+ f .

Then, for every z 2 X we have

∂(g+ f )(z) =
T

ε>0
cl (∂εg(z) + ∂εf (z)) .

If f and g are lsc we recover the Hiriart-Urruty & Phelps
formula.
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Now we recover the Moreau-Rockafellar result:

Theorem

Let f , g : X ! R be convex functions. Assume that f is finite and
continuous at x0 for some x0 2 dom g . Then

g+ f = g+ f ,

and

∂(f + g)(z) = ∂f (z) + ∂g(z).
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Weakening assumptions ....
Consider two convex functions f , g : X ! R[ f�∞g.
1) If X is finite-dimensional and

ri(dom f ) \ ri(dom g) 6= ∅, (1)

then
∂(f + g) = ∂f + ∂g. (2)

2) If X is a (real) separated locally convex space, (2) holds if

dom f \ cont g 6= ∅ OR cont f \ dom g 6= ∅. (3)

3) (2) also follows replacing (1) by

g is polyhedral AND dom g\ ri(dom f ) 6= ∅.

4) If f , g 2 Γ(X), we have

∂(f + g)(x) =
T

ε>0
cl(∂εf (x) + ∂εg(x)). (4)
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The following formula uses the weaker condition that the
domains of the involved functions overlap quasi-sufficiently.

The required assumptions are at an intermediate level of
generality between the Moreau-Rockafellar’s (2) and the
Hiriart-Urruty and Phelps formulas (4).

Theorem
Let f and g be two convex functions defined on X and satisfying
f + g = f̄ + g. Given x 2 X such that g(x) 2 R, we assume either
(i) R+(epi g� (x, g(x))) is closed or
(ii) dom f \ ri(dom g) 6= ∅ and gjaff(dom g) is continuous on
ri(dom g).
Then

∂(f + g)(x) =
\
ε>0

cl(∂εf (x) + ∂g(x)). (5)
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Conditions (1) f + g = f̄ + g and (2) f + g = f̄ + g are not
comparable in general: On one hand, for the case f = g,
condition (2) reads 2f̄ = f̄ + f̄ , which is obviously always true,
while the validity of (1) requires the lsc of f . On the other hand,
(1) and (2) are equivalent whenever function g is lsc.

This other result can be found in [CoHaLo’16].

Theorem
If ri(dom f ) \ ri(dom g) 6= ∅, and fjaff(dom f ) and gjaff(dom g) are
respectively continuous on ri(dom f ) and ri(dom g), we have, for
every x 2 X,

∂(f + g)(x) = cl (∂f (x) + ∂g(x)) .

In addition, if one of the subdifferential sets of f or g at x is locally
compact, then this last formula reduces to the exact rule

∂(f + g)(x) = ∂f (x) + ∂g(x).
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