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For f : Rn → R, we consider the following inequality system

(S) f (z) ≤ 0.

To judge whether x is an approximate solution of (S), we want to
know d(x , [f ≤ 0]) := inf{‖x − z‖ : f (z) ≤ 0}.

However, we often measure [f (x)]+ := max{f (x),0}.

So, we seek an error bound: there exist τ, δ > 0 such that

d(x , [f ≤ 0]) ≤ τ
(
[f (x)]+ + [f (x)]δ+

)
either locally or globally.
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Definition
We say f has a
(1) global error bound with exponent δ if there exist τ > 0 such that

d(x , [f ≤ 0]) ≤ τ
(
[f (x)]+ + [f (x)]δ+

)
for all x ∈ Rn

(2) local error bound with exponent δ around x if there exist τ, ε > 0
such that

d(x , [f ≤ 0]) ≤ τ
(
[f (x)]+ + [f (x)]δ+

)
for all x ∈ B(x ; ε).

If δ = 1 in (1) (resp. (1)), we say f has a Lipschitz type global (resp.
local) error bound.
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Error bound is useful in

analyzing the convergence properties of algorithms (e.g. Luo
2000, Fukushima 2005, Attouch etal. 2009, Tseng 2010 and
Izmailov & Solodov 2014);

sensitivity analysis of optimization problem/variational inequality
problem (e.g. Jourani 2000, Ye 2002)

identifying the active constraints (e.g. Facchinei etal. 1998 and
Pang 1997)

studying maximal monotone operator (Borwein & Dutta 2015)
and mixed integer programming problem (Stein, 2016)
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Some Known Results

Lipschitz type global error bound holds when f is maximum of
finitely many affine functions (Hoffman 1951)

Global error bound can fail even when f is convex and
continuous (e.g. f (x1, x2) = x1 +

√
x2

1 + x2
2 ).

Has close link with metric sub-regularity and calmness.

Many further developments (e.g. Aze, Ioffe, Klatte, Kummer,
Kruger, Lewis, Li, López, Ng, Ngai, Outrata, Pang, Robinson,
Thera, Ye etc...)
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Quadratic cases

Global error bound with exponent 1/2 holds when f is a convex
quadratic function. (Luo and Luo, 1994); extended to convex
quadratic system, (Wang and Pang 1994).

Local error bound with exponent 1/2 holds when f is a
(nonconvex) quadratic function. (Luo and Sturm, 1998).

Open questions raised by Luo and Sturm: what happens for the
case f can be expressed as finitely many (nonconvex) quadratic
functions?

Guoyin Li Error Bounds for Parametric Polynomial Systems



Introduction Error Bounds for Parametric Polynomial System Application I: Cyclic Projection Algorithm Application II: High-order Stability Analysis Conclusions and Future Work

Motivating Example: go beyond quadratic

Consider f (x) = x2. Then, [f ≤ 0] = {0} and so,

d(x , [f ≤ 0]) = |x | ≤ (x2)
1
2 = [f (x)]

1
2
+.

More generally, consider f (x) = xd with d is an even number. Then,

d(x , [f ≤ 0]) = |x | ≤ (xd )
1
d = [f (x)]

1
d
+.
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Motivating Example: go beyond quadratic (cont.)

Let d be an even number. Consider f (x) = max{f1(x), . . . , fn(x)}
where

f1(x) := xd
1 and fi (x) := xd

i − xi−1, i = 2, · · · ,n.

Then, [f ≤ 0] = {0}. Consider x(t) = (tdn−1
, tdn−2

, · · · , td , t) ∈ Rn,
t ∈ (0,1). Then

d(x(t), [f ≤ 0]) = O(t);

[f (x(t))]+ = f (x(t)) = tdn

So,

d(x(t), [f ≤ 0]) = O
(

[f (x(t))]
1

dn
+

)
.
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Recent development for polynomial systems

Global error bound with exponent τ0 = 1
(d−1)n+1 holds when f is

a convex polynomial with degree d on Rn (L. SIOPT 2010).

Local error bound with exponent τ1 = max
{ 2

(2d−1)n+1 ,
1

β(n−1)dn

}
if f is maximum of finitely many convex polynomials with degree
d on Rn, where β(s) is the central binomial coefficient

( s
[s/2]

)
(Borwein, L. & Yao, SIOPT 2014 and Ngai, SIOPT 2015).

Local error bound with exponent
τ2 = max

{ 1
(d+1)(3d)n+r ,

1
d(6d−3)n+r−1

}
when f is maximum of r

many (nonconvex) polynomials with degree d on Rn (L.,
Mordukhovich, Pham, MP, 2014).
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Main Problem

Can we extend the error bound results to parametric polynomial
system:

φl (x , y) ≤ 0 for all y ∈ Ω, l = 1, . . . ,L,

where φl are polynomials on Rn × Rm with degree d and
Ω :=

{
y ∈ Rm

∣∣ gi (y) ≤ 0, i = 1, . . . , r ; hj (y) = 0, j = 1, . . . , s
}

with gi and hj are all polynomials on Rn with degree d .

System of this form arises in semi-infinite programming problem
and bilevel programming problem with polynomial data .
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Why do we care?

Many important nonlinear conic programs can be covered in this
framework:

(1) second order cone constraint with polynomial data:

‖(f1(x), . . . , fm(x))‖ ≤ f0(x)

⇐⇒
m∑

j=1

yj fj (x)− f0(x) ≤ 0 for all ‖y‖2 = 1

(2) polynomial matrix inequality constraint:

P(x) � 0⇐⇒
m∑

i,j=1

yi (P(x))i,j yj ≤ 0 for all ‖y‖2 = 1.
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Main Results: Assumptions

We suppose that the set of parameters

Ω =
{

y ∈ Rm
∣∣ gi (y) ≤ 0, i = 1, . . . , r ; hj (y) = 0, j = 1, . . . , s

}
be bounded and regular.

What is a regular set?

Ω is regular if, for all y ∈ Ω, the following MFCQ holds:

r∑
i=1

λi∇gi (y) +
s∑

j=1

κj∇hj (y) = 0,

λi ≥ 0, λigi (y) = 0, and κj ∈ R

 =⇒ λi = 0, κj = 0 (3.0)
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Examples of Regular sets

Discrete set Ω := {1, . . . ,p}, p ∈ N. Write it as

Ω =
{

y ∈ R
∣∣ h(y) = 0

}
with h(y) := (y − 1)(y − 2) · · · (y − p).

and observe that ∇h(y) 6= 0 for all y ∈ Ω.

The algebraic set

Ω :=
{

y ∈ Rm
∣∣ h1(y) = 0, . . . ,hs(y) = 0

}
, s ≤ m,

is regular provided that rank
(
∇h1(y), . . . ,∇hs(y)

)
= s for all

y ∈ Ω. (e.g. Sphere under lp-norm where p > 1 is an integer).
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Error bounds for parametric polynomial system

Let R(n,d) := d(3d − 3)n−1.

Theorem

Let φ(x) = max y∈Ω
1≤l≤L

fl (x , y) where fl : Rn × Rm → R, are polynomials
of degrees at most d and

Ω =
{

y ∈ Rm
∣∣ gi (y) ≤ 0, i = 1, . . . , r ; hj (y) = 0, j = 1, . . . , s

}
is bounded and regular, where gi ,hj are polynomials on Rm with
degree d. Then, for any x̄ ∈ Rn there exist constants c, ε > 0 such
that

d(x , [φ ≤ 0]) ≤ c
[
φ(x)

]τ
+

whenever ‖x − x̄‖ ≤ ε, (3.0)

where τ = 1
R(2n+(m+r+s+2)(n+1),d+L+1) .

Remark: Can be extended to more general cases where Ω is
replaced by a set-valued mapping Y (x) and under weaker regularity
assumption.
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What is behind the proof?

Łojasiewicz gradient inequality and its variants

(Łojasiewicz inequality) Let f be an analytic function on Rn with
f (0) = 0 and ∇f (0) = 0. Then, exists a rational number
τ ∈ (0,1] and c, δ > 0 s.t. ‖∇f (x)‖ ≥ c|f (x)|1−τ for all ‖x‖ ≤ δ.

(Gwoździewicz 1999 and Kollar 2002) In addition, if f is a
polynomial with degree d and 0 is a strict local minimizer, then,
τ = 1

(d−1)n+1 ;

Dropping the strict minimizer assumption in Gwoździewicz’s
result, we have a new estimate τ = R(n,d)−1 = 1

d(3d−3)n−1

(Kurdyka 2012, and L., Mordukhovich and Pham 2014).
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Outline of the proof

Goal: Error bound for φ(x) = max y∈Ω
1≤l≤L

fl (x , y).

Case 1: L = 1. Then φ(x) = max{f (x , y) : gi (y) ≤ 0, hj (y) = 0}
and its Lagrangian-type function is

F (x , y , µ, κ) := −f (x , y) +
r∑

i=1

µ2
i gi (y) +

s∑
j=1

κjhj (y)

(1) Reduce the error bound for φ to F ;
(2) F is a single polynomial and so, Łojasiewicz’s gradient

inequality for single polynomial applies.

Case 2: L ≥ 2. Reduce it to the case L = 1 by using

maxy∈Ω max1≤l≤L fl (x , y) = max
(y,t)∈Ω×{1,...,L}

L∑
l=1

γl (t)fl (x , y).

where γl : R→ R is the Lagrange interpolation polynomials
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Polynomial matrix inequalities: regularity free

Let P be an (m ×m) polynomial matrix of n variables with degree d ,
and let SPMI = {x : P(x) � 0}.

Corollary

For a compact set K ⊂ Rn there is c > 0 such that

dist(x ,SPMI) ≤ c
([
λmax

(
P(x)

)]
+

)τ
whenever x ∈ K ,

where τ = R(2n + (m + 1)(n + 1),d + 3)−1 and λmax denotes the
maximum eigenvalue of a symmetric matrix.

Recall that:

P(x) � 0⇐⇒
m∑

i,j=1

yi (P(x))i,j yj ≤ 0 for all ‖y‖2 = 1.
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Hunting for the true exponent

Example

Let d be an even number. For any x = (x1, . . . , xn) define A1(x) := xd
1

and then, for any i = 2, . . . ,n,

Ai (x) :=

(
−1 xd

i
xd

i −xi−1

)
,

and the polynomial matrix inequality P(x) := diag
(
A1(x), . . . ,An(x))

Then, S = {x : P(x) � 0} = {0}. For
x(t) = (t (2d)n−1

, t (2d)n−2
, · · · , t2d , t) ∈ Rn,

d(x(t),S) = O(t);

λmax
(
P(x(t))

)
= td(2d)n−1

Thus, τ ≤ 1
d(2d)n−1 while our estimate gives τ = 1

(d+3)(3d+6)4n−1 .
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Cyclic Projection Algorithm

(1) Initialization: Given x0 ∈ Rn and finite many closed convex sets
C1,C2, · · · ,CL in Rn with

⋂L
l=1 Ci 6= ∅.

(2) Algorithm: The sequence of cyclic projections, (xk )k∈N, is
defined by

x1 := P1x0, x2 := P2x1, · · · , xL := PLxL−1, xL+1 := P1xL . . .

where Pl denotes the Euclidean projection to the set Cl .

(3) Output: A point in the intersections of Cl .

When L = 2, it reduces to alternating projection method.

Guoyin Li Error Bounds for Parametric Polynomial Systems
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Let x0 = (0,2) and

C1 :=
{

(a,b) ∈ R2 | (a + 1)2 + b2 − 1 ≤ 0
}

C2 :=
{

(a,b) ∈ R2 | (a− 1)2 + b2 − 1 ≤ 0
}
.

The following figure depicts the algorithm’s trajectory:

Guoyin Li Error Bounds for Parametric Polynomial Systems
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This algorithm is easy to implement and was studied by a lot of
researchers:

always convergent to x∞ ∈
⋂L

l=1 Cl (Bregman, 1950)

linearly convergence whenever int
⋂L

l=1 Cl 6= ∅ (cf. Bauschke &
Borwein, 1996).

What is the convergence rate in the degenerate cases e.g. when
int
⋂L

l=1 Cl = ∅?

A partial answer can be given when each Cl has suitable polynomial
structures.

Guoyin Li Error Bounds for Parametric Polynomial Systems
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Definition
We say Cl , l = 1, . . . ,L are polynomial matrix inequality representable
convex sets if Cl is convex and

Cl :=
{

x ∈ Rn
∣∣ A(l)(x) � 0

}
, l = 1, . . . ,L,

where every A(l) : Rn → Sm is a polynomial matrix mapping such that
each

(
A(l)(x)

)
ij is a real polynomial with degree at most d .

Theorem (L. Mordukhovich, Nghia, Pham 2016)

Let x0 ∈ Rn and let (xk )k∈N be the sequence generated by the cyclic
projection algorithm for the above Cl . Then xk → x∞ ∈

⋂L
l=1 Cl , and

there exists M > 0 such that

‖xk − x∞‖ ≤ M
1
kρ
, ∀k ∈ N,

where ρ := 1
[2 R(2n+(m+3)(n+1),d+L)−2]−1 .
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Further recent advance on cyclic (alternating)
projection algorithm

For the linear matrix inequality case, sharper convergence rate
for was obtained in “ Drusvyatskiy, L., & Wolkowicz, Alternating
projections for ill-posed semi-definite feasibility problems, MP
2016”
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Other algorithms

In the semi-algebraic setting, similar techniques can also be used to
analyzing the convergence rate of

proximal point algorithm (Bolte & Attouch, 2013;L. &
Mordukhovich, 2012)

Douglas-Rachford algorithm and one of its variant (L. and Pong,
MP, 2016; Borwein, L., Tam, to appear in SIOPT).
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High-order stability for polynomial problems

Consider the following parameterized problem:

(PMIu) minimize f (x ,u) subject to P(x) � 0,

where u ∈ Rl is the perturbation parameter, and

f (·,u) is a polynomial with degree d and f (x , ·) is locally
Lipschitzian.

P : Rn → Sm is such that each (i , j)th element
(
P(x)

)
ij ,

1 ≤ i , j ≤ m, is a real polynomial with degree d .

the feasible set is compact.

For each u ∈ Rl denote the solution set of (POP)u by S(u).
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Example:

maxx∈Rn f (x ,u) := p0(x) +
l∑

i=1

uipi (x)

subject to A0 +
m∑

j=1

xjAj +
m∑

j,k=1

xjxk Bjk � 0,

where all pi are polynomials.

Guoyin Li Error Bounds for Parametric Polynomial Systems
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Hölder continuity of solution maps

Theorem (L., Mordukhovich, Nghia, & Pham, 2016)

For (POPu), let u ∈ Rl . Then, there are constants c, δ > 0 such that

S(u) ⊂ S(u) + c ‖u − u‖τ B(0,1) whenever ‖u − u‖ ≤ δ

with the explicit exponent

τ = R
(
2n + (m + 3)(n + 1),d + 4

)−1
.

Similar Hölder continuity of solution maps for nonlinear
2nd-order cone program and generalized semi-infinite program
with polynomial data were also provided.

Has important application in deriving high-order semismooth
property for maximum eigenvalue of a tensor (L., Qi & Yu 2013
and L., Mordukhovich & Pham 2014).
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Conclusion

Error bound is an interesting research topic and has many
important applications;

Variational analysis and semi-algebraic techniques could shed
some light on how to improve error bound results from quadratic
to polynomial cases.
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Future Works

Still very preliminary development. A lot of interesting questions, e.g.

(1) How to sharpen the derived exponent?

(2) How to estimate/compute the error bound constant c and the
radius constant δ (for local cases)?

(3) For the stability result, what happens if we also perturb the
constraint functions ?
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Want to know more?
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Hölderian stability in optimization and spectral theory of tensors,
Math. Program., 153 (2015), no. 2, Ser. A, 333-362.

(6) G. Li and B.S. Mordukhovich, Hölder metric subregularity with
applications to proximal point method, SIAM J. Optim., 22
(2012), No. 4, 1655-1684.

(7) G. Li, L.Q. Qi, G. Yu, Semismoothness of the maximum
eigenvalue function of a symmetric tensor and its application.
Linear Algebra Appl. 438 (2013), no. 2, 813-833.

Guoyin Li Error Bounds for Parametric Polynomial Systems



Introduction Error Bounds for Parametric Polynomial System Application I: Cyclic Projection Algorithm Application II: High-order Stability Analysis Conclusions and Future Work

Thanks !
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f (x1, x2) = x1 +
√

x2
1 + x2

2 . [f ≤ 0] = {(x1, x2) : x1 ≤ 0, x2 = 0}.
Consider xn = (−n,1). Then d(xn, [f ≤ 0]) = 1 and
f (xn) = −n +

√
n2 + 1 = 1√

n2+1+n
→ 0.
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