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Sufficient Optimality Conditions

It is very instructive to first consider smooth optimisation and
the second order sufficiency. If f a continuous second partial
derivatives the x̄ is a local minimum if we have the following
conditions satisfied.

∇f (x̄) = 0 (1)

dT∇2f (x̄)d ą 0 for all }d} = 1 (2)

By continuity we know that (2) can be extended to hold on a
ball and so for x P Bδ(x̄) we have dT∇2f (x)d ą 0 giving
strict convexity locally.

Andrew Eberhard RMIT RMIT University Tilt Stability Revisited



Sufficient Optimality Conditions

It is very instructive to first consider smooth optimisation and
the second order sufficiency. If f a continuous second partial
derivatives the x̄ is a local minimum if we have the following
conditions satisfied.

∇f (x̄) = 0 (1)

dT∇2f (x̄)d ą 0 for all }d} = 1 (2)

By continuity we know that (2) can be extended to hold on a
ball and so for x P Bδ(x̄) we have dT∇2f (x)d ą 0 giving
strict convexity locally.

Andrew Eberhard RMIT RMIT University Tilt Stability Revisited



Sufficient Optimality Conditions

Such conditions imply that x ÞÑ f (x) is strongly convex on
Bδ(x̄) i.e. f (x) ě f (x 1) + x∇f (x 1), x ´ x 1y+ λmin

2 }x ´ x 1}2.

So local convexification around a point where second order
sufficiency holds is a well known phenomena in smooth
optimization.

We want to remind ourselves as to what conditions replace
these in nonsmooth optimisation via a reformulation of the
smooth conditions.
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Sufficient Optimality Conditions

The strong convexity of x ÞÑ f (x) on Bδ(x̄) means that
supporting hyperlanes lies below the graph of f .

More strongly we have for all x , x 1 P Bδ(x̄),

f (x)´ xx ,∇f (x 1)y ě f (x 1)´ xx 1,∇f (x 1)y+
λmin

2
}x 1 ´ x}2

(“a strongly stable minima”) so for z 1 = ∇f (x 1) we have

x 1 = (∇f )´1(z 1) = arg mintx | f (x)´ xx , z 1yu := m(z 1).
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Sufficient Optimality Conditions

The existence of the inverse (∇f )´1(z) follows from the
strong monotonicity of x ÞÑ ∇f (x).

Taking the inequality

f (x)´ xx ,∇f (x 1)y ě f (x 1)´ xx 1,∇f (x 1)y+
λmin

2
}x 1 ´ x}2

f (x 1)´ xx 1,∇f (x)y ě f (x)´ xx ,∇f (x)y+
λmin

2
}x 1 ´ x}2

twice but swapping the roles of the x and x 1 then adding gives

x
x 1 ´ x

}x 1 ´ x}
,
∇f (x 1)´∇f (x)

}x 1 ´ x}
y ě λmin.
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Sufficient Optimality Conditions

Using z 1 = ∇f (x 1) and z = ∇f (x) we have by definition
x 1 = m(z 1) and x = m(z) giving (with an application of
schwarz inequality)

(
1

λmin
)}z 1 ´ z} ě }m(z 1)´m(z)},

a Lipschitz property for z ÞÑ m(z).

Definition

A point x̄ gives a tilt stable local minimum of a function
f : Rn Ñ R+8 := RY t+8u if f (x̄) is finite and there exists an
ε ą 0 such that the mapping

m : z ÞÑ arg min
}x´x̄}ďε

tf (x)´ xx , zyu (3)

is single valued and Lipschitz on some neighbourhood of 0 with
m (0) = x̄ .
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A very Nice Class of Problems - Prox-regularity

The purpose of the talk is to discuss how to connect similar
notions for the ”nicest” non-trivial class of nonsmooth
functions that can be considered. These consists of problems
that can be modelled as ”nonlinear programming problems
modeled via nonsmooth analysis”.

We want to see what extra is need to close the loop in these
connections.

Problems like
min f (x) + g(F (x))

where F is twice continuously differentiable and g is
extended-real-valued convex and f is a nonsmooth objective.
We also require a CQ of the form

Ey ‰ 0 with y P Ndom g (F (x̄)) with ∇F (x̄)˚y = 0.

Such functions are in the class of prox-regular,
subdifferentially continuous functions.
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Proximal Subdifferentials

If we lift a quadratic minorant so that it touches the epigraph
of f : Rn Ñ R+8 at x 1 P dom f we obtain the
proximal–subdifferential condition

f (x) ě f (x 1) + xz 1, x ´ x 1y ´
r

2
}x ´ x 1}2. (4)

Denote by Bpf (x 1) the proximal subdifferential, which consists
of all vectors z 1 satisfying (4) in some neighbourhood of x 1.

f is prox-regular at x̄ with respect to r ą 0 of (4) is satisfied
uniformly in r within some ball x , x 1 P Bδ(x̄) (for some δ ą 0)
for all z 1 P Bf (x 1) for which f (x) is close to f (x 1).

We say f is subdifferentially continuous at x̄ for z̄ P Bf (x̄) iff
f (x)Ñ f (x̄) whenever (x , z)Ñ (x̄ , z̄) with z P Bf (x).
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The Limiting Subdifferentials

The limiting subdifferential is given for all x by

Bf (x)

= lim sup
x 1Ñf x

Bpf (x
1) := tz | Dzv P Bpf (xv ), xv Ñf x , with zv Ñ zu,

where x 1 Ñf x means that x 1 Ñ x and f (x 1)Ñ f (x).
Define epi f := t(x , α) | α ě f (x)u which is just a set in Rn+1

�
�

epi f

+∞
+∞

When we have a a function that is prox-regular and
subdifferentially continuous at (x̄ , z̄) then locally proximal and
limiting subgradients coincide.
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Stable Strong Local Minimizers and
Strict local Minimizers order 2

One very classical notion is that of a strict local minimum
order two at x̄ if the there exists β, δ ą 0 such that

f (x) ě f (x̄) + β}x ´ x̄}2 for all x P Bδ(x̄).

When this is applied to the perturbed function
fz (x) := f (x)´ xz , xy and we demand fixed constants
β, δ ą 0 that apply locally at (xz , z) P Graph Bf XBε(x̄ , 0)
then we have a strong local minimizer i.e.

fz (x) ě fz (xz ) + β}x ´ xz}
2 for all x P Bδ(x̄).

This is also referred to as the second-order growth condition.
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Stable Strong Local Minimizers

The same calculation perform before give the observation that
when we have a stable strong local minimizer then we have the
mapping z ÞÑ xz is locally Lipschitz (with Lipschitz constant
1

2β ) i.e. for all (xz , z), (xv , v) P Graph Bf XBε(x̄ , 0) we have

Subtracting the two equations

f (xz ) ě f (xv ) + xv , xz ´ xv y+ β}xz ´ xv }
2

f (xv ) ě f (xz ) + xz , xv ´ xzy+ β}xz ´ xv }
2

we have
}v ´ z}

}xv ´ xz}
ě x

v ´ z

}xv ´ xz}
,
xv ´ xz
}xv ´ xz}

ě 2β

and so }xv ´ xz} ď
1

2β}v ´ z}. Moreover

v ÞÑ (Bf )´1(v)XBε(0) is single valued. Thus we have a tilt
stable minimizer.
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Strong Metric Regularity

We now observe that the single valuedness and Lipschitz
behaviour of v ÞÑ (Bf )´1(v)XBε(0) correspond to the notion
of strong metric regularity.

A multi-function F is metric regular around (x̄ , ȳ) P GraphF
iff there exist neighbourhoods U of x̄ and V of ȳ such that for
all (x , y) P U ˆV we have

d(x ,F´1(y)) ď κd(y ,F (x)).

When we fix y = ȳ we say that we have the weaker notion of
metric sub-regularity.

If we demand single valuedness of y ÞÑ F´1(y) locally then
we say that we have a strong version of these properties.

Clearly we have seen that second-order growth condition force
v ÞÑ (Bf )´1(v)XBε(0) to be strongly metric regular.
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all (x , y) P U ˆV we have

d(x ,F´1(y)) ď κd(y ,F (x)).
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More on Stable Strong Local Minimizers

Mordukhovich and Nghia first showed that for a lower
semi-continuous convex function (on a Banach space) we
have the following equivalent:

1 The subdifferential Bf : X Ñ X˚ is strongly metric regular
around (x̄ , x̄˚) with modulus κ ą 0.

2 There are neighbourhoods U and V of x̄ and x̄˚, respectively,
such that the mapping (Bf )´1 admits a single valued
localisation on which we also have the second order growth
condition.

Moreover the following are equivalent:
1 The point x̄ is a global minimizer of f and the subgradient is

strongly metric regular around (x̄ , 0) with modulus κ
2 The point x̄ is a tilt stable local minimizer of f .
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A Geometric Description of Subgradients

One can define a normal cones to sets and one of the simplest
is following

N̂C (x̄) := tx | Dτ ą 0 s.t. xv , x´ x̄y ď
1

2τ
}x´ x̄}2 for all x P Cu.

This motivates one to consider

 

v | (v ,´1) P N̂epi f (x̄ , f (x̄))
(

and remarkably this set the same as Bpf (x̄) defined before.

The (limiting) subdifferential corresponds to the (limiting)
normal cone

Nepi f (x̄ , f (x̄)) = lim sup
(x 1,α)(Pepi f )Ñ(x̄ ,f (x̄))

N̂epi f (x
1, f (x 1))

and Bf (x̄) =
 

v | (v ,´1) P Nepi f (x̄ , f (x̄))
(

.
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Second Order Constructions

This motivates people to apply the last very general
construction to any multi-function F : Rn Ñ Rm.

Denote its graph by GraphF := t(x , y) | y P F (x)u.

The Mordukhovich coderivatives is defined as

D˚F (x | y)(w) := tp P Rn | (p,´w) P NGraph F (x , y)u

D̂˚F (x | y)(w) := tp P Rn | (p,´w) P N̂Graph F (x , y)u.

Then for F (x) = Bf (x) we have a second order objects
defined for z P Bf (x) as

B2f (x | z)(w) := D˚(Bf )(x | z)(w)

B̂2f (x | z)(w) := D̂˚(Bf )(x | z)(w)

Andrew Eberhard RMIT RMIT University Tilt Stability Revisited



Second Order Constructions

This motivates people to apply the last very general
construction to any multi-function F : Rn Ñ Rm.

Denote its graph by GraphF := t(x , y) | y P F (x)u.

The Mordukhovich coderivatives is defined as

D˚F (x | y)(w) := tp P Rn | (p,´w) P NGraph F (x , y)u

D̂˚F (x | y)(w) := tp P Rn | (p,´w) P N̂Graph F (x , y)u.

Then for F (x) = Bf (x) we have a second order objects
defined for z P Bf (x) as

B2f (x | z)(w) := D˚(Bf )(x | z)(w)

B̂2f (x | z)(w) := D̂˚(Bf )(x | z)(w)

Andrew Eberhard RMIT RMIT University Tilt Stability Revisited



Second Order Constructions

This motivates people to apply the last very general
construction to any multi-function F : Rn Ñ Rm.

Denote its graph by GraphF := t(x , y) | y P F (x)u.

The Mordukhovich coderivatives is defined as

D˚F (x | y)(w) := tp P Rn | (p,´w) P NGraph F (x , y)u

D̂˚F (x | y)(w) := tp P Rn | (p,´w) P N̂Graph F (x , y)u.

Then for F (x) = Bf (x) we have a second order objects
defined for z P Bf (x) as

B2f (x | z)(w) := D˚(Bf )(x | z)(w)

B̂2f (x | z)(w) := D̂˚(Bf )(x | z)(w)

Andrew Eberhard RMIT RMIT University Tilt Stability Revisited



Second Order Constructions

This motivates people to apply the last very general
construction to any multi-function F : Rn Ñ Rm.

Denote its graph by GraphF := t(x , y) | y P F (x)u.

The Mordukhovich coderivatives is defined as

D˚F (x | y)(w) := tp P Rn | (p,´w) P NGraph F (x , y)u

D̂˚F (x | y)(w) := tp P Rn | (p,´w) P N̂Graph F (x , y)u.

Then for F (x) = Bf (x) we have a second order objects
defined for z P Bf (x) as

B2f (x | z)(w) := D˚(Bf )(x | z)(w)

B̂2f (x | z)(w) := D̂˚(Bf )(x | z)(w)

Andrew Eberhard RMIT RMIT University Tilt Stability Revisited



Second Order Constructions

As a simple example consider (a ą 0)

f (x) =

"

a
2x

2 if x ă 0
x if x ě 0

Then the second order derivative (based on the limiting
normal cone) is then

B2f (0 | 0)(w) =

$

&

%

tawu if w ă 0
(´8,+8) if w = 0
[aw ,+8) otherwise

1

y = − 1
ax

Graph∂f

N∂f (0)

Graph∂f www

−w

aw

aw
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Second Order Constructions

Note that in the last example we have

we have 0 P Bf (0) and

@w ‰ 0 and all q P B2f (0 | 0)(w)

we have xq,wy ě aw2 ą 0.

Let f : Rn Ñ R+8 and assume the first–order condition
0 P Bf (x̄) holds.

The the second order sufficiency condition

@ }h} = 1, p P D˚ (Bf ) (x̄ , 0)(h) we have xp, hy ě β ą 0 (5)

implies a tilt–stable local minimum when f is both
prox-regular and subdifferentially continuous (convex functions
satisfies both of these).
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Metric Regularity, Pseudo-Lipschitzness and Coderivatives

The following are well known to be equivalent:

A multi-function Γ : Rn Ñ Rm is metrically regular at (x̄ , z̄).

There exists µ, η ą 0 such that for all
(x , z) P Bη(x̄)ˆ [Γ(x)XBη(ȳ)] and w P D˚Γ(x , z)(y) we
have }y} ď µ}w}.

The multi-function Γ´1 : Rm Ñ Rn has the Aubin (or
Pseudo-Lischitzian) property: There exist neighbourhoods of
x̄ and ȳ

Γ´1(x 1)XW Ď Γ´1(x) + κ}x 1 ´ x}B for all x , x 1 P V .

The coderivative nonsingularity condition holds:

0 P D˚Γ(x̄ , z̄)(y) only if y = 0.

This later condition is known as the Mordukhovich criteria.
i.e. kerD˚Γ(x̄ , z̄)(¨) = t0u.
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Convexification in Tilt Stability

The convex hull of a function f : Rn Ñ R+8 is denoted by
co f and corresponds to the proper lower-semi-continuous
function whose epigraph is given by co epi f (the smallest
closed convex set containing the graph).

From the definition of tilt stability we have on Bε (x̄) that

f (x) ě f (m (v)) + xx ´m (v) , vy

(i.e. v P Bcof (m(v))) where m(¨) is as defined in (3), and
hence

co f (x) ě f (m (v)) + xx ´m (v) , vy,

i.e. v P B co f (m(v)) and co f (m(v)) = f (m(v)). This shows
that there is a strong convexification process involved with tilt
stability.
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Convexification in Tilt Stability

Proposition

Consider f : Rn Ñ R+8 is a proper lower semi-continuous function
and suppose that m(z) ‰ H. Then for all sufficiently small ε ą 0,
in terms of the function h (w) := f (x̄ + w) + δBε(0) (w) we have

co arg min
xPBε(x̄)

[f (x)´ xx , zy] = arg min
w 1PRn

[co h (w)´ xv , zy]

for all z sufficiently close to 0. Consequently when x̄ is a tilt stable
local minimum of f we have

arg min
xPBε(x̄)

[f (x)´ xx , zy] = arg min
w 1PRn

[co h (w)´ xv , zy]

and a tilt stable local minimum of co h at x = 0.
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Equivalence of Metric Regularity vs Strong Metric
Regularity

Let f : Rn Ñ R be l.s.c. By the necessaryzsufficient
optimality conditions for convex function we have

m(z) := arg min
xPBε(x̄)

[f (x)´ xx , zy]

Ď co arg min
xPBε(x̄)

[f (x)´ xx , zy]

= arg min
w 1PRn

[co h (w)´ xv , zy] = (B co h)´1(z)XBε (x̄) .

Now as (B co h)´1(z) = Bh˚(z) we have m(z) single valued
and Lipschitz whenever B co h is strongly metrically regular.

In fact we only require B co h metrically regular for this to
occur thanks to the following result.
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Equivalence of Metric Regularity vs Strong Metric
Regularity

Theorem

Let H be a Hilbert space, f : H Ñ R+8 be lsc, prox-regular, and
subdifferentially continuous at x̄ P int(domBf ) for some
v̄ P Bf (x̄). Assume in addition that the subdifferential mapping Bf
is pseudo-Lipschitz (or Lipschitz like) with modulus L ě 0 around
(x̄ , v̄). Then there exists ε ą 0 such that Bf (x) = t∇f (x)u for all
x P Bε(x̄) with the Lipschitzian derivative x ÞÑ ∇f (x) on Bε(x̄).

If B co h is metrically regular at (0, z̄) then
(B co h)´1(z) = Bh˚(z) must be pseudo-Lipschitz around
(0, z̄).

As h˚ is convex it must be both prox-regular and
subdifferentially continuous there forcing z ÞÑ Bh˚(z) to be
single valued.
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(x̄ , v̄). Then there exists ε ą 0 such that Bf (x) = t∇f (x)u for all
x P Bε(x̄) with the Lipschitzian derivative x ÞÑ ∇f (x) on Bε(x̄).

If B co h is metrically regular at (0, z̄) then
(B co h)´1(z) = Bh˚(z) must be pseudo-Lipschitz around
(0, z̄).

As h˚ is convex it must be both prox-regular and
subdifferentially continuous there forcing z ÞÑ Bh˚(z) to be
single valued.
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Equivalence of Metric Regularity vs Strong Metric
Regularity

We see that B co h is metrically regular at (0, z̄) iff B co h is
strongly metrically regular at (0, z̄)

Without better understanding the effect convexification has
on either metric regularity of Lipschitz like behaviour of the
inverse this does not shed light on the following problem.

Conjecture

An open question: Suppose f is prox-regular and subdifferentially
continuous at x̄ for z̄ P Bf (x̄). Is Bf is metrically regular at (x̄ , z̄)
iff Bf is strongly metrically regular at (x̄ , z̄)?
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Coderivative definiteness and the Mordukhovich criteria

The the second order sufficiency condition

for all p P D˚ (Bf ) (x̄ , 0)(h) we have xp, hy ě β}h}2 ą 0 (6)

implies

the sufficient (and necessary condition) for metric regularity
i.e.

}p}}h} ě xp, hy ě β}h}

or
1

β
}p} ě }h} for all p P D˚ (Bf ) (x̄ , 0)(h).

and the Modukhovich condition for a Lipschitz like behaviour
of p ÞÑ (Bf )´1(p) i.e.

0 P D˚Bf (x̄ , z̄)(h) only if h = 0.

Andrew Eberhard RMIT RMIT University Tilt Stability Revisited



Coderivative definiteness and the Mordukhovich criteria

The the second order sufficiency condition

for all p P D˚ (Bf ) (x̄ , 0)(h) we have xp, hy ě β}h}2 ą 0 (6)

implies

the sufficient (and necessary condition) for metric regularity
i.e.

}p}}h} ě xp, hy ě β}h}

or
1

β
}p} ě }h} for all p P D˚ (Bf ) (x̄ , 0)(h).

and the Modukhovich condition for a Lipschitz like behaviour
of p ÞÑ (Bf )´1(p) i.e.

0 P D˚Bf (x̄ , z̄)(h) only if h = 0.

Andrew Eberhard RMIT RMIT University Tilt Stability Revisited



Coderivative definiteness and the Mordukhovich criteria

The the second order sufficiency condition

for all p P D˚ (Bf ) (x̄ , 0)(h) we have xp, hy ě β}h}2 ą 0 (6)

implies

the sufficient (and necessary condition) for metric regularity
i.e.

}p}}h} ě xp, hy ě β}h}

or
1

β
}p} ě }h} for all p P D˚ (Bf ) (x̄ , 0)(h).

and the Modukhovich condition for a Lipschitz like behaviour
of p ÞÑ (Bf )´1(p) i.e.

0 P D˚Bf (x̄ , z̄)(h) only if h = 0.

Andrew Eberhard RMIT RMIT University Tilt Stability Revisited



Coderivative definiteness and the Mordukhovich criteria

One might feel that this condition might have a natural
necessary counter part associated with any local minimiser x̄
i.e.

for all p P B2f (x̄ , 0)(h) := D˚ (Bf ) (x̄ , 0)(h) we have xp, hy ě 0
(7)

But this is not so: Let f (x1, x2) := (x2
1 ´ x2

2 ) + δΩ(x1, x2),
where Ω := t(x1, x2) | (x1 ´ x2, x1 + x2) P R2

+u. Then one
can show (0,´2) P B2f ((0, 0), 0)(0, 1) and so
x(0,´2), (0, 1)y = ´2 ă 0.

This is compounded with the fact that one can replace (6)
with the following: There exists κ ą 0 such that for any
r P [0, κ´1) we have

κ}p} ě }h} and xp, hy ě ´r}h}2 whenever p P B2f (x̄ , 0)(h).

An open problem is what is a ”natural” second order
necessary condition.
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Coderivative definiteness and the Mordukhovich criteria

Moreover the quadratic growth condition and its equivalence
to tilt stability and the former clearly implies the existence of
δ ą 0 such that for all x P Bδ(x̄) we have

f 2´(x , z , h) := lim inf
tÓ0

h1Ñh

2

t2
(f (x + th)´ f (x)´ xz , hy) ą 0

for all (x , z) P Graph Bf XBδ(x̄) and }h} = 1.

This is actually equivalent to the positive definite coderivative
condition (6) when f is prox-regular and subdifferentially
continuous at x̄ . Then we may apply the next result at each
point (x , z) P Graph Bf XBδ(x̄) to the function fz and then
take limits i.e.

D˚Bf (x̄ , 0)(h) = lim sup
(x ,z)ÑGraphBpf

(x̄ ,0)

h1Ñh

D̂˚Bpf (x , z)(h1).
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Coderivative definiteness and the Mordukhovich criteria

Theorem

Suppose f : Rn Ñ R+8 is a prox-bounded, extended real valued,
lower semi–continuous function. Suppose x̄ is a strict local
minimum order 2. Then we have 0 P Bpf (x̄) and the following
holds:
There exists some β ą 0 such that for all }h} = 1 and all
p P D̂˚ (Bpf ) (x , 0) (h) we have xh, py ě β ą 0.

Moreover we have

(fz )
2
´(x , 0, h) ě 0 for all }h} = 1,

is certainly necessary for a local minimum of fz at x .
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Second Order Constructions and Inverses

When we know f is convex then we have a number of
interesting inversions formula.

The conjugate of f is given by

f ˚(z) := inf
x
txx , zy ´ f (x)u

and z P Bf (x) iff z P (Bf ˚)´1(x).

Moreover for the coderivative we have

q P D˚(Bf )(x | z)(w) iff w P D˚(Bf ´1)(z | x)(q)

iff w P D˚(Bf ˚)(z | x)(q).

In particular

p P D˚ (Bf ) (x̄ , 0)(h) iff h P D˚ (Bf ˚) (0, x̄)(p). (8)
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Second Order Constructions and Inverses

One might conjecture that the sufficient conditions for tilt
stability is preserved under inverses but alas we need h ‰ 0 in
this conditions so the symmetry breaks on the possibility that
there exists h = 0 and a p ‰ 0 with

0 P D˚ (Bf ˚) (0, x̄)(p) = D˚ (Bf )´1 (0, x̄)(p).

This singularity of the inverse need to be eliminated to get
symmetry in this condition.

One is reminded of the ”Mordukhovich criteria” for the
”Aubin property”, but here it can fail.
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The VU decomposition

When rel-int co Bf (x̄) ‰ H we can take

z̄ P rel - int co Bf (x̄)X Bf (x̄) .

Define V := span tco Bf (x̄)´ z̄u and U := VK.

The idea here is that the subspace V contains the
nonsmoothness while the subspace U contains the smooth
part.

Graphf

U

V
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The VU decomposition

Under the VU decomposition we can then find ε ą 0 such that

z̄ + Bε (0)X V Ď co Bf (x̄) . (9)

One can then decompose z̄ = z̄U + z̄V so that when
w = u + v P U ‘ V we have xz̄ ,wy = xz̄U , uy+ xz̄V , vy.

Indeed we may decompose into the direct sum U ‘ V and
point x = xU + xV and use the box norm for this
decomposition }x ´ x̄} := max t}xU ´ x̄U } , }xV ´ x̄V}u .

Lemma

Consider h : U Ñ R+8 is a proper lower semi-continuous function.
Then Bcoh (u) Ď B [co h] (u) . When Bcoh (u) ‰ H then
co h (u) = h (u) and we have Bcoh (u) = B [co h] (u) .
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The U 1-Lagrangian

Let U 1 Ď U be a subspace, V 1 := (U 1)K and suppose
v (u) P arg minvPV 1XBε(0) tBf (x̄ + u + v)´ xzV 1 , vyu .

Defined for u P U 1 and v (¨) : U 1 Ñ V 1 XBε (0) the axillary
functions

kv (u) := h (u + v (u))´ xz̄V 1 , u + v (u)y

where h (w) := f (x̄ + w) + δ[U 1XBε(0)]‘[V 1XBε(0)] (w) and

g (w) := co h (w)

Then the U 1-Lagrangian

Lε
U 1 (u) := inf

v 1PV 1
 

h (u + v 1)´ xz̄V , v 1y
(

.

We have for the choice of v that kv (u) = Lε
U 1 (u) and

k˚v (zU 1) = h˚ (zU 1 + z̄V 1) = (Lε
U 1)

˚ (zU 1) : U 1 ÑR+8.
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The U 1-Lagrangian and Tilt Stability

Proposition

Consider f : Rn Ñ R+8 is a proper lower semi-continuous
function and suppose that x̄ give a tilt stable local minimum of f .

Then for u = PU 1 [m (zU 1 + z̄V 1)] P BU 1
ε (0) we have

zU 1 P Bco

[
Lε
U 1 + δBU 1

ε (0)

]
(u) (10)

Moreover for any u P BU 1
ε (0) and zU 1 taken as in (10) we have

(u, v (u)) P m (zU 1 + z̄V 1) = arg min tg (u + v)´ xzU 1 + z̄V 1 , u + vyu .

In particular z̄U 1 P Bcokv (0) = B co kv (0) and
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Some other second order quantities

Definition

1 The function f is said to be twice sub-differentiable (or
possess a subjet) at x if the following set is nonempty;

B2,´f (x) =
 

(z ,Q) : f (x 1) ě f (x) + xz , x 1 ´ xy

+
1

2
xQ(x 1 ´ x), (x 1 ´ x)y+ o(}x 1 ´ x}2) for x 1 P Bδ(x)

*

.

The subhessians at (x , z) P graph Bf are given by
B2,´f (x , z) := tQ P S(n) | (z ,Q) P B2,´f (x)u.

2 The limiting subjet of f at x is defined to be:
B2f (x) = lim supuÑf x B

2,´f (u) and the associated limiting
subhessians for z P Bf (x) are
B2f (x , z) =

 

Q P S (n) | (z ,Q) P B2f (x)
(

.

[Note B2,´f (x , z) ‰H iff Bp f (x) ‰H.]
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The U 2 subspace of U
We define the rank one barrier cone for B2f (x , z) as

b1(B2f (x , z)) := th P Rn | q
(
B2f (x , z)

)
(h)

:= sup
 

xQh, hy | Q P B2f (x , z)
(

ă 8u.

and the second order component of U as U2 := b1(B2f (x , z)).

Lemma

Let the function f : Rn ÞÑ R+8 be finite at x̄ and denote
U2 = b1(B2f (x̄ , z̄)). Then

U2 Ď U =
!

h | ´δ˚
Bf (x̄)(´h) = δ˚

Bf (x̄)(h) = xz̄ , hy
)

. (11)

Corollary

Suppose that f is quadratically minorized and is prox–regular at x̄
for z̄ P Bf (x̄) with respect to ε and r . Then b1(B2f (x̄ , z̄)) is a
linear subspace of Rn.
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Inheriting Tilt Stability on U 2 - A Chain of implications

The function v(¨) inherits the uniqueness of m(¨).

The function kv (¨) being well defined also inherits the tilt
stability of the local minimum x̄ of f but is shifted to 0 P U .

We have co kv inherting tilt stability from kv and so q ‰ 0

xp, qy ą 0 for all p P D˚ (B [co kv ]) (0|0) (q) .

Tilt stability can be shown to be equivalent to there being a
stable strong local minimizers of co kv at 0.

We say (co kv )z := co kv ´ xz , ¨y has a strict local minimum
order two at u1 relative to Bδ(0) when
(co kv )z (u) ě (co kv )z (u1) + β }u ´ u1}2 for all u1, u P Bδ(0).
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Inheriting Tilt Stability on U 2 - A Chain of implications

The tilt stability of co kv has some other implications. The
uniqueness of the tilt minimizers corresponds to the local
uniqueness of the mapping

argmintco kv ´ xz , ¨y+ δBδ(0)u Ď (Bp co kv )
´1(z)XBδ(0).

Along with the Aubin Property

(Bp co kv )
´1(z)XBδ(0) Ď (Bp co kv )

´1(z 1) + L}z ´ z 1}B1(0)

for all z , z 1 P Bδ(0)X U2.

This later property is known to forces single valuedness of
(B co kv )´1 = B(co kv )˚ locally in some small ball. Indeed
u ÞÑ ∇(co kv )˚ = ∇k˚v exists and is Lipchitz at a rate L.
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Inheriting Tilt Stability on U 2 - A Chain of implications

Symmetrically one can verify of the Rockafellar condition for
tilt stability of (co kv )˚ will lead via a similar argument to the
conclusion that (co kv )˚˚ = co kv is differentiable with a
Lipschitz gradient on U2.

The bounded second order behaviour on U2 is critical here, in
ruling out a singularity of the inverse coderivative at z = 0.

This in turn implies the same conclusion for

u ÞÑ co f (x̄ + u + v(u)) for u P U2.

That is the restriction to co h to the manifold
M := t(u, v(u)) | u P U2 is a C 1,1 smooth function.
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The First Main Result

Theorem

Consider f : Rn Ñ R+8 is a proper lower semi-continuous
function, quadratically minorized and a prox-regular function at x̄
for 0 P Bf (x̄). Suppose in addition f admits a nontrivial subspace
U2 := b1

(
B2f (x̄ , 0)

)
Ď U . Suppose that f has a tilt stable local

minimum at x̄ and let g (w) := [co h] (w) and
tv (u)u = arg minv 1PV2XBε(0) f (x̄ + u + v 1) : U2 Ñ V2.
Then

we have g (u + v (u)) = f (x̄ + u + v (u)) and
∇ug (u + v (u)) existing as Lipschitz functions for

u P BU2

δ (0),

moreover M :=
!

(u, v (u)) | u P BU2

ε (0)
)

is a manifold on

which the restriction to M of f is smooth.
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