Tilt Stability Revisited

Andrew Eberhard RMIT RMIT University

WoMBaT 25nd November 2016

Andrew Eberhard RMIT RMIT University Tilt Stability Revisited

Sufficient Optimality Conditions smooth case

- ② A very Nice Class of Problems Prox-regularity
- Stable Strong Local Minimizers and Strict local Minimisers order 2
- Strong Metric Regularity
- More on Stable Strong Local Minimizers
- Geometric Description of Subgradients and Second Order Notions
- Ø Metric Regularity, Pseudo-Lipschitzness and Coderivatives
- Onvexification in Tilt Stability
- It is a state of the state o

- Sufficient Optimality Conditions smooth case
- 2 A very Nice Class of Problems Prox-regularity
- Stable Strong Local Minimizers and Strict local Minimisers order 2
- Strong Metric Regularity
- More on Stable Strong Local Minimizers
- Geometric Description of Subgradients and Second Order Notions
- Ø Metric Regularity, Pseudo-Lipschitzness and Coderivatives
- Onvexification in Tilt Stability
- OUD DESCRIPTIONS THE NEW FRONTIER.

- Sufficient Optimality Conditions smooth case
- A very Nice Class of Problems Prox-regularity
- Stable Strong Local Minimizers and Strict local Minimisers order 2
- Strong Metric Regularity
- More on Stable Strong Local Minimizers
- Geometric Description of Subgradients and Second Order Notions
- Ø Metric Regularity, Pseudo-Lipschitzness and Coderivatives
- Onvexification in Tilt Stability
- *VU* decompositions the new frontier.

- Sufficient Optimality Conditions smooth case
- 2 A very Nice Class of Problems Prox-regularity
- Stable Strong Local Minimizers and Strict local Minimisers order 2
- Strong Metric Regularity
- More on Stable Strong Local Minimizers
- Geometric Description of Subgradients and Second Order Notions
- Ø Metric Regularity, Pseudo-Lipschitzness and Coderivatives
- Onvexification in Tilt Stability
- *VU* decompositions the new frontier.

- Sufficient Optimality Conditions smooth case
- A very Nice Class of Problems Prox-regularity
- Stable Strong Local Minimizers and Strict local Minimisers order 2
- Strong Metric Regularity
- More on Stable Strong Local Minimizers
- Geometric Description of Subgradients and Second Order Notions
- Ø Metric Regularity, Pseudo-Lipschitzness and Coderivatives
- Onvexification in Tilt Stability
- *VU* decompositions the new frontier.

- Sufficient Optimality Conditions smooth case
- A very Nice Class of Problems Prox-regularity
- Stable Strong Local Minimizers and Strict local Minimisers order 2
- Strong Metric Regularity
- More on Stable Strong Local Minimizers
- Geometric Description of Subgradients and Second Order Notions
- Ø Metric Regularity, Pseudo-Lipschitzness and Coderivatives
- Onvexification in Tilt Stability
- *VU* decompositions the new frontier.

- Sufficient Optimality Conditions smooth case
- A very Nice Class of Problems Prox-regularity
- Stable Strong Local Minimizers and Strict local Minimisers order 2
- Strong Metric Regularity
- More on Stable Strong Local Minimizers
- Geometric Description of Subgradients and Second Order Notions
- Ø Metric Regularity, Pseudo-Lipschitzness and Coderivatives
- Onvexification in Tilt Stability
- It is a state of the state o

- Sufficient Optimality Conditions smooth case
- A very Nice Class of Problems Prox-regularity
- Stable Strong Local Minimizers and Strict local Minimisers order 2
- Strong Metric Regularity
- More on Stable Strong Local Minimizers
- Geometric Description of Subgradients and Second Order Notions
- Ø Metric Regularity, Pseudo-Lipschitzness and Coderivatives
- Onvexification in Tilt Stability
- It is the second sec

- Sufficient Optimality Conditions smooth case
- A very Nice Class of Problems Prox-regularity
- Stable Strong Local Minimizers and Strict local Minimisers order 2
- Strong Metric Regularity
- More on Stable Strong Local Minimizers
- Geometric Description of Subgradients and Second Order Notions
- Ø Metric Regularity, Pseudo-Lipschitzness and Coderivatives
- Onvexification in Tilt Stability
- $\textcircled{O} \ \mathcal{VU} \ decompositions the new frontier.$

• It is very instructive to first consider smooth optimisation and the second order sufficiency. If f a continuous second partial derivatives the \bar{x} is a local minimum if we have the following conditions satisfied.

$$\nabla f(\bar{x}) = 0 \tag{1}$$

$$d^{T} \nabla^{2} f(\bar{x}) d > 0 \quad \text{for all } \|d\| = 1 \tag{2}$$

By continuity we know that (2) can be extended to hold on a ball and so for x ∈ B_δ(x̄) we have d^T∇²f(x)d > 0 giving strict convexity locally.

• It is very instructive to first consider smooth optimisation and the second order sufficiency. If f a continuous second partial derivatives the \bar{x} is a local minimum if we have the following conditions satisfied.

$$\nabla f(\bar{x}) = 0 \tag{1}$$

$$d^{T} \nabla^{2} f(\bar{x}) d > 0$$
 for all $||d|| = 1$ (2)

By continuity we know that (2) can be extended to hold on a ball and so for x ∈ B_δ(x̄) we have d^T∇²f(x)d > 0 giving strict convexity locally.

- Such conditions imply that $x \mapsto f(x)$ is strongly convex on $B_{\delta}(\bar{x})$ i.e. $f(x) \ge f(x') + \langle \nabla f(x'), x x' \rangle + \frac{\lambda_{\min}}{2} ||x x'||^2$.
- So local convexification around a point where second order sufficiency holds is a well known phenomena in smooth optimization.
- We want to remind ourselves as to what conditions replace these in nonsmooth optimisation via a reformulation of the smooth conditions.

- Such conditions imply that $x \mapsto f(x)$ is strongly convex on $B_{\delta}(\bar{x})$ i.e. $f(x) \ge f(x') + \langle \nabla f(x'), x x' \rangle + \frac{\lambda_{\min}}{2} ||x x'||^2$.
- So local convexification around a point where second order sufficiency holds is a well known phenomena in smooth optimization.
- We want to remind ourselves as to what conditions replace these in nonsmooth optimisation via a reformulation of the smooth conditions.

- Such conditions imply that $x \mapsto f(x)$ is strongly convex on $B_{\delta}(\bar{x})$ i.e. $f(x) \ge f(x') + \langle \nabla f(x'), x x' \rangle + \frac{\lambda_{\min}}{2} ||x x'||^2$.
- So local convexification around a point where second order sufficiency holds is a well known phenomena in smooth optimization.
- We want to remind ourselves as to what conditions replace these in nonsmooth optimisation via a reformulation of the smooth conditions.

- The strong convexity of x → f(x) on B_δ(x̄) means that supporting hyperlanes lies below the graph of f.
- More strongly we have for all $x, x' \in B_{\delta}(\bar{x})$,

$$f(x) - \langle x, \nabla f(x') \rangle \ge f(x') - \langle x', \nabla f(x') \rangle + \frac{\lambda_{\min}}{2} \|x' - x\|^2$$

("a strongly stable minima") so for z' =
abla f(x') we have

 $x' = (\nabla f)^{-1}(z') = \arg\min\{x \mid f(x) - \langle x, z' \rangle\} := m(z').$

- The strong convexity of x → f(x) on B_δ(x̄) means that supporting hyperlanes lies below the graph of f.
- More strongly we have for all $x, x' \in B_{\delta}(\bar{x})$,

$$f(x) - \langle x, \nabla f(x') \rangle \ge f(x') - \langle x', \nabla f(x') \rangle + \frac{\lambda_{\min}}{2} \|x' - x\|^2$$

("a strongly stable minima") so for z' =
abla f(x') we have

$$x' = (\nabla f)^{-1}(z') = \arg\min\{x \mid f(x) - \langle x, z' \rangle\} := m(z').$$

- The existence of the inverse (∇f)⁻¹(z) follows from the strong monotonicity of x → ∇f(x).
- Taking the inequality

$$f(x) - \langle x, \nabla f(x') \rangle \geq f(x') - \langle x', \nabla f(x') \rangle + \frac{\lambda_{\min}}{2} \|x' - x\|^2$$

$$f(x') - \langle x', \nabla f(x) \rangle \geq f(x) - \langle x, \nabla f(x) \rangle + \frac{\lambda_{\min}}{2} \|x' - x\|^2$$

twice but swapping the roles of the x and x' then adding gives

$$\left\langle \frac{x'-x}{\|x'-x\|}, \frac{\nabla f(x') - \nabla f(x)}{\|x'-x\|} \right\rangle \ge \lambda_{\min}.$$

♬▶ ◀ ☱ ▶ ◀

- The existence of the inverse (∇f)⁻¹(z) follows from the strong monotonicity of x → ∇f(x).
- Taking the inequality

$$\begin{aligned} f(x) - \langle x, \nabla f(x') \rangle & \geq \quad f(x') - \langle x', \nabla f(x') \rangle + \frac{\lambda_{\min}}{2} \|x' - x\|^2 \\ f(x') - \langle x', \nabla f(x) \rangle & \geq \quad f(x) - \langle x, \nabla f(x) \rangle + \frac{\lambda_{\min}}{2} \|x' - x\|^2 \end{aligned}$$

twice but swapping the roles of the x and x' then adding gives

$$\langle \frac{x'-x}{\|x'-x\|}, \frac{\nabla f(x')-\nabla f(x)}{\|x'-x\|} \rangle \ge \lambda_{\min}.$$

Using z' = ∇f(x') and z = ∇f(x) we have by definition x' = m(z') and x = m(z) giving (with an application of schwarz inequality)

$$\left(\frac{1}{\lambda_{\min}}\right)\|z'-z\| \ge \|m(z')-m(z)\|,$$

a Lipschitz property for $z \mapsto m(z)$.

Definition

A point \bar{x} gives a tilt stable local minimum of a function $f: \mathbb{R}^n \to \mathbb{R}_{+\infty} := \mathbb{R} \cup \{+\infty\}$ if $f(\bar{x})$ is finite and there exists an $\varepsilon > 0$ such that the mapping

$$m: z \mapsto \arg\min_{\|x - \bar{x}\| \le \varepsilon} \{f(x) - \langle x, z \rangle\}$$
(3)

is single valued and Lipschitz on some neighbourhood of 0 with $m(0) = \bar{x}$.

• Using $z' = \nabla f(x')$ and $z = \nabla f(x)$ we have by definition x' = m(z') and x = m(z) giving (with an application of schwarz inequality)

$$\left(\frac{1}{\lambda_{\min}}\right)\|z'-z\| \ge \|m(z')-m(z)\|,$$

a Lipschitz property for $z \mapsto m(z)$.

Definition

A point \bar{x} gives a tilt stable local minimum of a function $f : \mathbb{R}^n \to \mathbb{R}_{+\infty} := \mathbb{R} \cup \{+\infty\}$ if $f(\bar{x})$ is finite and there exists an $\varepsilon > 0$ such that the mapping

$$m: z \mapsto \arg\min_{\|x - \bar{x}\| \le \varepsilon} \{f(x) - \langle x, z \rangle\}$$
(3)

is single valued and Lipschitz on some neighbourhood of 0 with $m(0) = \bar{x}$.

• Using $z' = \nabla f(x')$ and $z = \nabla f(x)$ we have by definition x' = m(z') and x = m(z) giving (with an application of schwarz inequality)

$$\left(\frac{1}{\lambda_{\min}}\right)\|z'-z\| \ge \|m(z')-m(z)\|,$$

a Lipschitz property for $z \mapsto m(z)$.

Definition

A point \bar{x} gives a tilt stable local minimum of a function $f : \mathbb{R}^n \to \mathbb{R}_{+\infty} := \mathbb{R} \cup \{+\infty\}$ if $f(\bar{x})$ is finite and there exists an $\varepsilon > 0$ such that the mapping

$$m: z \mapsto \arg\min_{\|x - \bar{x}\| \le \varepsilon} \left\{ f(x) - \langle x, z \rangle \right\}$$
(3)

is single valued and Lipschitz on some neighbourhood of 0 with $m(0) = \bar{x}$.

A very Nice Class of Problems - Prox-regularity

- The purpose of the talk is to discuss how to connect similar notions for the "nicest" non-trivial class of nonsmooth functions that can be considered. These consists of problems that can be modelled as "nonlinear programming problems modeled via nonsmooth analysis".
- We want to see what extra is need to close the loop in these connections.
- Problems like

 $\min f(x) + g(F(x))$

where F is twice continuously differentiable and g is extended-real-valued convex and f is a nonsmooth objective. We also require a CQ of the form

 $\nexists y \neq 0$ with $y \in N_{\operatorname{dom} g}(F(\bar{x}))$ with $\nabla F(\bar{x})^* y = 0$.

Such functions are in the class of prox-regular, subdifferentially continuous functions.

A very Nice Class of Problems - Prox-regularity

- The purpose of the talk is to discuss how to connect similar notions for the "nicest" non-trivial class of nonsmooth functions that can be considered. These consists of problems that can be modelled as "nonlinear programming problems modeled via nonsmooth analysis".
- We want to see what extra is need to close the loop in these connections.
- Problems like

 $\min f(x) + g(F(x))$

where F is twice continuously differentiable and g is extended-real-valued convex and f is a nonsmooth objective. We also require a CQ of the form

 $\nexists y \neq 0$ with $y \in N_{\operatorname{dom} g}(F(\bar{x}))$ with $\nabla F(\bar{x})^* y = 0$.

Such functions are in the class of prox-regular, subdifferentially continuous functions.

A very Nice Class of Problems - Prox-regularity

- The purpose of the talk is to discuss how to connect similar notions for the "nicest" non-trivial class of nonsmooth functions that can be considered. These consists of problems that can be modelled as "nonlinear programming problems modeled via nonsmooth analysis".
- We want to see what extra is need to close the loop in these connections.
- Problems like

$$\min f(x) + g(F(x))$$

where F is twice continuously differentiable and g is extended-real-valued convex and f is a nonsmooth objective. We also require a CQ of the form

$$\nexists y \neq 0$$
 with $y \in N_{\operatorname{dom} g}(F(\bar{x}))$ with $\nabla F(\bar{x})^* y = 0$.

Such functions are in the class of prox-regular, subdifferentially continuous functions.

$$f(x) \ge f(x') + \langle z', x - x' \rangle - \frac{r}{2} \|x - x'\|^2.$$
(4)

- Denote by ∂_pf(x') the proximal subdifferential, which consists of all vectors z' satisfying (4) in some neighbourhood of x'.
- f is prox-regular at x̄ with respect to r > 0 of (4) is satisfied uniformly in r within some ball x, x' ∈ B_δ(x̄) (for some δ > 0) for all z' ∈ ∂f(x') for which f(x) is close to f(x').
- We say f is subdifferentially continuous at \bar{x} for $\bar{z} \in \partial f(\bar{x})$ iff $f(x) \to f(\bar{x})$ whenever $(x, z) \to (\bar{x}, \bar{z})$ with $z \in \partial f(x)$.

$$f(x) \ge f(x') + \langle z', x - x' \rangle - \frac{r}{2} ||x - x'||^2.$$
 (4)

- Denote by ∂_pf(x') the proximal subdifferential, which consists of all vectors z' satisfying (4) in some neighbourhood of x'.
- f is prox-regular at x̄ with respect to r > 0 of (4) is satisfied uniformly in r within some ball x, x' ∈ B_δ(x̄) (for some δ > 0) for all z' ∈ ∂f(x') for which f(x) is close to f(x').
- We say f is subdifferentially continuous at \bar{x} for $\bar{z} \in \partial f(\bar{x})$ iff $f(x) \to f(\bar{x})$ whenever $(x, z) \to (\bar{x}, \bar{z})$ with $z \in \partial f(x)$.

$$f(x) \ge f(x') + \langle z', x - x' \rangle - \frac{r}{2} \|x - x'\|^2.$$
(4)

- Denote by ∂_pf(x') the proximal subdifferential, which consists of all vectors z' satisfying (4) in some neighbourhood of x'.
- f is prox-regular at x̄ with respect to r > 0 of (4) is satisfied uniformly in r within some ball x, x' ∈ B_δ(x̄) (for some δ > 0) for all z' ∈ ∂f(x') for which f(x) is close to f(x').
- We say f is subdifferentially continuous at \bar{x} for $\bar{z} \in \partial f(\bar{x})$ iff $f(x) \to f(\bar{x})$ whenever $(x, z) \to (\bar{x}, \bar{z})$ with $z \in \partial f(x)$.

$$f(x) \ge f(x') + \langle z', x - x' \rangle - \frac{r}{2} ||x - x'||^2.$$
 (4)

- Denote by ∂_pf(x') the proximal subdifferential, which consists of all vectors z' satisfying (4) in some neighbourhood of x'.
- f is prox-regular at \bar{x} with respect to r > 0 of (4) is satisfied uniformly in r within some ball $x, x' \in B_{\delta}(\bar{x})$ (for some $\delta > 0$) for all $z' \in \partial f(x')$ for which f(x) is close to f(x').
- We say f is subdifferentially continuous at \bar{x} for $\bar{z} \in \partial f(\bar{x})$ iff $f(x) \to f(\bar{x})$ whenever $(x, z) \to (\bar{x}, \bar{z})$ with $z \in \partial f(x)$.

The Limiting Subdifferentials

 $\partial f(x)$

- The limiting subdifferential is given for all x by
 - $= \limsup_{x' \stackrel{f}{\to} x} \partial_p f(x') := \{ z \mid \exists z_v \in \partial_p f(x_v), x_v \stackrel{f}{\to} x, \text{ with } z_v \to z \},$
 - where $x' \xrightarrow{f} x$ means that $x' \to x$ and $f(x') \to f(x)$.
- Define epi $f := \{(x, \alpha) \mid \alpha \ge f(x)\}$ which is just a set in \mathbb{R}^{n+1}

 When we have a a function that is prox-regular and subdifferentially continuous at (x
, z
) then locally proximal and limiting subgradients coincide.

The Limiting Subdifferentials

 $\partial f(x)$

- The limiting subdifferential is given for all x by
 - $= \limsup_{x' \stackrel{f}{\to} x} \partial_p f(x') := \{ z \mid \exists z_v \in \partial_p f(x_v), x_v \stackrel{f}{\to} x, \text{ with } z_v \to z \},$

where $x' \xrightarrow{f} x$ means that $x' \to x$ and $f(x') \to f(x)$.

• Define epi $f := \{(x, \alpha) \mid \alpha \ge f(x)\}$ which is just a set in \mathbb{R}^{n+1}

 When we have a a function that is prox-regular and subdifferentially continuous at (x
, z
) then locally proximal and limiting subgradients coincide.

The Limiting Subdifferentials

 $\partial f(x)$

- The limiting subdifferential is given for all x by
 - $= \limsup_{x' \stackrel{f}{\to} x} \partial_p f(x') := \{ z \mid \exists z_v \in \partial_p f(x_v), x_v \stackrel{f}{\to} x, \text{ with } z_v \to z \},$

where $x' \xrightarrow{f} x$ means that $x' \to x$ and $f(x') \to f(x)$.

• Define epi $f := \{(x, \alpha) \mid \alpha \ge f(x)\}$ which is just a set in \mathbb{R}^{n+1}

 When we have a a function that is prox-regular and subdifferentially continuous at (x
, z
) then locally proximal and limiting subgradients coincide.

Stable Strong Local Minimizers and Strict local Minimizers order 2

 One very classical notion is that of a strict local minimum order two at x̄ if the there exists β, δ > 0 such that

$$f(x) \ge f(\bar{x}) + \beta \|x - \bar{x}\|^2$$
 for all $x \in B_{\delta}(\bar{x})$.

• When this is applied to the perturbed function $f_z(x) := f(x) - \langle z, x \rangle$ and we demand fixed constants $\beta, \delta > 0$ that apply locally at $(x_z, z) \in \text{Graph } \partial f \cap B_{\varepsilon}(\bar{x}, 0)$ then we have a strong local minimizer i.e.

$$f_z(x) \ge f_z(x_z) + \beta \|x - x_z\|^2$$
 for all $x \in B_{\delta}(\bar{x})$.

• This is also referred to as the second-order growth condition.

Stable Strong Local Minimizers and Strict local Minimizers order 2

 One very classical notion is that of a strict local minimum order two at x̄ if the there exists β, δ > 0 such that

$$f(x) \ge f(\bar{x}) + \beta \|x - \bar{x}\|^2$$
 for all $x \in B_{\delta}(\bar{x})$.

• When this is applied to the perturbed function $f_z(x) := f(x) - \langle z, x \rangle$ and we demand fixed constants $\beta, \delta > 0$ that apply locally at $(x_z, z) \in \text{Graph } \partial f \cap B_{\varepsilon}(\bar{x}, 0)$ then we have a strong local minimizer i.e.

$$f_z(x) \ge f_z(x_z) + \beta \|x - x_z\|^2$$
 for all $x \in B_\delta(\bar{x})$.

• This is also referred to as the second-order growth condition.

Stable Strong Local Minimizers and Strict local Minimizers order 2

 One very classical notion is that of a strict local minimum order two at x
 x if the there exists β, δ > 0 such that

$$f(x) \ge f(\bar{x}) + \beta \|x - \bar{x}\|^2$$
 for all $x \in B_{\delta}(\bar{x})$.

• When this is applied to the perturbed function $f_z(x) := f(x) - \langle z, x \rangle$ and we demand fixed constants $\beta, \delta > 0$ that apply locally at $(x_z, z) \in \text{Graph } \partial f \cap B_{\varepsilon}(\bar{x}, 0)$ then we have a strong local minimizer i.e.

$$f_z(x) \ge f_z(x_z) + \beta \|x - x_z\|^2$$
 for all $x \in B_{\delta}(\bar{x})$.

• This is also referred to as the second-order growth condition.

Stable Strong Local Minimizers

The same calculation perform before give the observation that when we have a stable strong local minimizer then we have the mapping z → x_z is locally Lipschitz (with Lipschitz constant 1/2β) i.e. for all (x_z, z), (x_v, v) ∈ Graph ∂f ∩ B_ε(x̄, 0) we have
 Subtracting the two equations

 $f(x_z) \geq f(x_v) + \langle v, x_z - x_v \rangle + \beta \|x_z - x_v\|^2$ $f(x_v) \geq f(x_z) + \langle z, x_v - x_z \rangle + \beta \|x_z - x_v\|^2$ we have $\frac{\|v - z\|}{\|x_v - x_z\|} \geq \langle \frac{v - z}{\|x_v - x_z\|}, \frac{x_v - x_z}{\|x_v - x_z\|} \geq 2\beta$

and so $||x_v - x_z|| \leq \frac{1}{2\beta} ||v - z||$. Moreover $v \mapsto (\partial f)^{-1}(v) \cap B_{\varepsilon}(0)$ is single valued. Thus we have a tilt stable minimizer.
Stable Strong Local Minimizers

- The same calculation perform before give the observation that when we have a stable strong local minimizer then we have the mapping $z \mapsto x_z$ is locally Lipschitz (with Lipschitz constant $\frac{1}{2\beta}$) i.e. for all $(x_z, z), (x_v, v) \in \text{Graph } \partial f \cap B_{\varepsilon}(\bar{x}, 0)$ we have
- Subtracting the two equations

٧

$$f(x_z) \geq f(x_v) + \langle v, x_z - x_v \rangle + \beta \|x_z - x_v\|^2$$

$$f(x_v) \geq f(x_z) + \langle z, x_v - x_z \rangle + \beta \|x_z - x_v\|^2$$

we have
$$\frac{\|v - z\|}{\|x_v - x_z\|} \geq \langle \frac{v - z}{\|x_v - x_z\|}, \frac{x_v - x_z}{\|x_v - x_z\|} \geq 2\beta$$

and so $||x_v - x_z|| \leq \frac{1}{2\beta} ||v - z||$. Moreover $v \mapsto (\partial f)^{-1}(v) \cap B_{\varepsilon}(0)$ is single valued. Thus we have a tilt stable minimizer.

- We now observe that the single valuedness and Lipschitz behaviour of v → (∂f)⁻¹(v) ∩ B_ε(0) correspond to the notion of strong metric regularity.
- A multi-function F is metric regular around (x̄, ȳ) ∈ Graph F iff there exist neighbourhoods U of x̄ and V of ȳ such that for all (x, y) ∈ U × V we have

$$d(x, F^{-1}(y)) \leq \kappa d(y, F(x)).$$

- When we fix $y = \bar{y}$ we say that we have the weaker notion of metric sub-regularity.
- If we demand single valuedness of y → F⁻¹(y) locally then we say that we have a strong version of these properties.
- Clearly we have seen that second-order growth condition force
 v → (∂f)⁻¹(v) ∩ B_ε(0) to be strongly metric regular.

/□ ▶ < 글 ▶ < 글

- We now observe that the single valuedness and Lipschitz behaviour of v → (∂f)⁻¹(v) ∩ B_ε(0) correspond to the notion of strong metric regularity.
- A multi-function F is metric regular around (x̄, ȳ) ∈ Graph F iff there exist neighbourhoods U of x̄ and V of ȳ such that for all (x, y) ∈ U × V we have

$$d(x, F^{-1}(y)) \leq \kappa d(y, F(x)).$$

- When we fix y = y
 we say that we have the weaker notion of metric sub-regularity.
- If we demand single valuedness of y → F⁻¹(y) locally then we say that we have a strong version of these properties.

• Clearly we have seen that second-order growth condition force $v \mapsto (\partial f)^{-1}(v) \cap B_{\varepsilon}(0)$ to be strongly metric regular.

- We now observe that the single valuedness and Lipschitz behaviour of v → (∂f)⁻¹(v) ∩ B_ε(0) correspond to the notion of strong metric regularity.
- A multi-function F is metric regular around (x̄, ȳ) ∈ Graph F iff there exist neighbourhoods U of x̄ and V of ȳ such that for all (x, y) ∈ U × V we have

$$d(x, F^{-1}(y)) \leq \kappa d(y, F(x)).$$

- When we fix y = y
 we say that we have the weaker notion of metric sub-regularity.
- If we demand single valuedness of y → F⁻¹(y) locally then we say that we have a strong version of these properties.
- Clearly we have seen that second-order growth condition force $v \mapsto (\partial f)^{-1}(v) \cap B_{\varepsilon}(0)$ to be strongly metric regular.

- We now observe that the single valuedness and Lipschitz behaviour of v → (∂f)⁻¹(v) ∩ B_ε(0) correspond to the notion of strong metric regularity.
- A multi-function F is metric regular around (x̄, ȳ) ∈ Graph F iff there exist neighbourhoods U of x̄ and V of ȳ such that for all (x, y) ∈ U × V we have

$$d(x, F^{-1}(y)) \leq \kappa d(y, F(x)).$$

- When we fix y = y
 we say that we have the weaker notion of metric sub-regularity.
- If we demand single valuedness of y → F⁻¹(y) locally then we say that we have a strong version of these properties.

• Clearly we have seen that second-order growth condition force $v \mapsto (\partial f)^{-1}(v) \cap B_{\varepsilon}(0)$ to be strongly metric regular.

- We now observe that the single valuedness and Lipschitz behaviour of v → (∂f)⁻¹(v) ∩ B_ε(0) correspond to the notion of strong metric regularity.
- A multi-function F is metric regular around (x̄, ȳ) ∈ Graph F iff there exist neighbourhoods U of x̄ and V of ȳ such that for all (x, y) ∈ U × V we have

$$d(x, F^{-1}(y)) \leq \kappa d(y, F(x)).$$

- When we fix $y = \bar{y}$ we say that we have the weaker notion of metric sub-regularity.
- If we demand single valuedness of y → F⁻¹(y) locally then we say that we have a strong version of these properties.
- Clearly we have seen that second-order growth condition force $v \mapsto (\partial f)^{-1}(v) \cap B_{\varepsilon}(0)$ to be strongly metric regular.

- Mordukhovich and Nghia first showed that for a lower semi-continuous convex function (on a Banach space) we have the following equivalent:
 - The subdifferential ∂f : X → X* is strongly metric regular around (x̄, x̄*) with modulus κ > 0.
 - ② There are neighbourhoods U and V of x̄ and x̄*, respectively, such that the mapping (∂f)⁻¹ admits a single valued localisation on which we also have the second order growth condition.

- The point \bar{x} is a global minimizer of f and the subgradient is strongly metric regular around $(\bar{x}, 0)$ with modulus κ
- 2 The point \bar{x} is a tilt stable local minimizer of f.

- Mordukhovich and Nghia first showed that for a lower semi-continuous convex function (on a Banach space) we have the following equivalent:
 - One subdifferential ∂f : X → X* is strongly metric regular around (x̄, x̄*) with modulus κ > 0.
 - ② There are neighbourhoods U and V of x̄ and x̄*, respectively, such that the mapping (∂f)⁻¹ admits a single valued localisation on which we also have the second order growth condition.

- The point x̄ is a global minimizer of f and the subgradient is strongly metric regular around (x̄, 0) with modulus κ
- 2 The point \bar{x} is a tilt stable local minimizer of f.

- Mordukhovich and Nghia first showed that for a lower semi-continuous convex function (on a Banach space) we have the following equivalent:
 - The subdifferential ∂f : X → X* is strongly metric regular around (x̄, x̄*) with modulus κ > 0.
 - 2 There are neighbourhoods U and V of x̄ and x̄*, respectively, such that the mapping (∂f)⁻¹ admits a single valued localisation on which we also have the second order growth condition.

- The point \bar{x} is a global minimizer of f and the subgradient is strongly metric regular around $(\bar{x}, 0)$ with modulus κ
- 2 The point \bar{x} is a tilt stable local minimizer of f.

- Mordukhovich and Nghia first showed that for a lower semi-continuous convex function (on a Banach space) we have the following equivalent:
 - O The subdifferential ∂f : X → X* is strongly metric regular around (x̄, x̄*) with modulus κ > 0.
 - ② There are neighbourhoods U and V of x̄ and x̄*, respectively, such that the mapping (∂f)⁻¹ admits a single valued localisation on which we also have the second order growth condition.

- The point \bar{x} is a global minimizer of f and the subgradient is strongly metric regular around $(\bar{x}, 0)$ with modulus κ
- 2) The point \bar{x} is a tilt stable local minimizer of f.

- Mordukhovich and Nghia first showed that for a lower semi-continuous convex function (on a Banach space) we have the following equivalent:
 - The subdifferential ∂f : X → X* is strongly metric regular around (x̄, x̄*) with modulus κ > 0.
 - ② There are neighbourhoods U and V of x̄ and x̄*, respectively, such that the mapping (∂f)⁻¹ admits a single valued localisation on which we also have the second order growth condition.

- The point \bar{x} is a global minimizer of f and the subgradient is strongly metric regular around $(\bar{x}, 0)$ with modulus κ
- 2 The point \bar{x} is a tilt stable local minimizer of f.

A Geometric Description of Subgradients

 One can define a normal cones to sets and one of the simplest is following

$$\hat{N}_{\mathcal{C}}(\bar{x}) := \{ x \mid \exists \tau > 0 \text{ s.t. } \langle v, x - \bar{x} \rangle \leqslant \frac{1}{2\tau} \| x - \bar{x} \|^2 \text{ for all } x \in \mathcal{C} \}.$$

• This motivates one to consider

$$\left\{ v \mid (v, -1) \in \hat{N}_{\mathsf{epif}}(\bar{x}, f(\bar{x})) \right\}$$

and remarkably this set the same as ∂_pf(x̄) defined before.
The (limiting) subdifferential corresponds to the (limiting) normal cone

$$\begin{split} N_{\mathsf{epi}\,f}(\bar{x},f(\bar{x})) &= \limsup_{(x',\alpha)(\in\mathsf{epi}\,f)\to(\bar{x},f(\bar{x}))} \hat{N}_{\mathsf{epi}\,f}(x',f(x'))\\ \text{and} \quad \partial f(\bar{x}) &= \left\{ v \mid (v,-1) \in N_{\mathsf{epi}\,f}(\bar{x},f(\bar{x})) \right\}. \end{split}$$

A Geometric Description of Subgradients

• One can define a normal cones to sets and one of the simplest is following

$$\hat{N}_{C}(\bar{x}) := \{x \mid \exists \tau > 0 \text{ s.t. } \langle v, x - \bar{x} \rangle \leqslant \frac{1}{2\tau} \|x - \bar{x}\|^{2} \text{ for all } x \in C \}.$$

• This motivates one to consider

$$\left\{ v \mid (v, -1) \in \hat{N}_{\mathsf{epif}}(\bar{x}, f(\bar{x})) \right\}$$

and remarkably this set the same as $\partial_{\rho} f(\bar{x})$ defined before.

 The (limiting) subdifferential corresponds to the (limiting) normal cone

$$\begin{split} N_{\mathrm{epi}\,f}(\bar{x},f(\bar{x})) &= \limsup_{(x',\alpha)(\in \mathrm{epi}\,f) \to (\bar{x},f(\bar{x}))} \hat{N}_{\mathrm{epi}\,f}(x',f(x')) \\ \text{and} \quad \partial f(\bar{x}) &= \left\{ v \mid (v,-1) \in N_{\mathrm{epi}\,f}(\bar{x},f(\bar{x})) \right\}. \end{split}$$

A Geometric Description of Subgradients

• One can define a normal cones to sets and one of the simplest is following

$$\hat{N}_{\mathcal{C}}(\bar{x}) := \{ x \mid \exists \tau > 0 \text{ s.t. } \langle v, x - \bar{x} \rangle \leqslant \frac{1}{2\tau} \| x - \bar{x} \|^2 \text{ for all } x \in \mathcal{C} \}.$$

• This motivates one to consider

$$\left\{ v \mid (v, -1) \in \hat{N}_{\mathsf{epi}\,f}(\bar{x}, f(\bar{x})) \right\}$$

and remarkably this set the same as $\partial_{\rho} f(\bar{x})$ defined before.

• The (limiting) subdifferential corresponds to the (limiting) normal cone

$$\begin{split} N_{\mathrm{epi}\,f}(\bar{x},f(\bar{x})) &= \limsup_{(x',\alpha)(\in \mathrm{epi}\,f) \to (\bar{x},f(\bar{x}))} \hat{N}_{\mathrm{epi}\,f}(x',f(x')) \\ \mathrm{and} \quad \partial f(\bar{x}) &= \left\{ v \mid (v,-1) \in N_{\mathrm{epi}\,f}(\bar{x},f(\bar{x})) \right\}. \end{split}$$

- This motivates people to apply the last very general construction to any multi-function F : ℝⁿ ⇒ ℝ^m.
- Denote its graph by Graph $F := \{(x, y) \mid y \in F(x)\}.$
- The Mordukhovich coderivatives is defined as

 $D^*F(x \mid y)(w) := \{ p \in \mathbb{R}^n \mid (p, -w) \in N_{\text{Graph } F}(x, y) \}$ $\hat{D}^*F(x \mid y)(w) := \{ p \in \mathbb{R}^n \mid (p, -w) \in \hat{N}_{\text{Graph } F}(x, y) \}.$

$$\partial^2 f(x \mid z)(w) := D^*(\partial f)(x \mid z)(w)$$
$$\partial^2 f(x \mid z)(w) := \hat{D}^*(\partial f)(x \mid z)(w)$$

- This motivates people to apply the last very general construction to any multi-function F : ℝⁿ ⇒ ℝ^m.
- Denote its graph by Graph $F := \{(x, y) \mid y \in F(x)\}.$
- The Mordukhovich coderivatives is defined as

 $D^*F(x \mid y)(w) := \{ p \in \mathbb{R}^n \mid (p, -w) \in N_{\text{Graph } F}(x, y) \}$ $\hat{D}^*F(x \mid y)(w) := \{ p \in \mathbb{R}^n \mid (p, -w) \in \hat{N}_{\text{Graph } F}(x, y) \}.$

$$\partial^2 f(x \mid z)(w) := D^*(\partial f)(x \mid z)(w)$$
$$\partial^2 f(x \mid z)(w) := \hat{D}^*(\partial f)(x \mid z)(w)$$

- This motivates people to apply the last very general construction to any multi-function F : ℝⁿ ⇒ ℝ^m.
- Denote its graph by Graph $F := \{(x, y) \mid y \in F(x)\}.$
- The Mordukhovich coderivatives is defined as

$$D^*F(x \mid y)(w) := \{ p \in \mathbb{R}^n \mid (p, -w) \in N_{\text{Graph } F}(x, y) \} \\ \hat{D}^*F(x \mid y)(w) := \{ p \in \mathbb{R}^n \mid (p, -w) \in \hat{N}_{\text{Graph } F}(x, y) \}.$$

$$\partial^2 f(x \mid z)(w) := D^*(\partial f)(x \mid z)(w)$$

$$\partial^2 f(x \mid z)(w) := \hat{D}^*(\partial f)(x \mid z)(w)$$

- This motivates people to apply the last very general construction to any multi-function F : ℝⁿ ⇒ ℝ^m.
- Denote its graph by Graph $F := \{(x, y) \mid y \in F(x)\}.$
- The Mordukhovich coderivatives is defined as

$$D^*F(x \mid y)(w) := \{ p \in \mathbb{R}^n \mid (p, -w) \in N_{\text{Graph } F}(x, y) \} \\ \hat{D}^*F(x \mid y)(w) := \{ p \in \mathbb{R}^n \mid (p, -w) \in \hat{N}_{\text{Graph } F}(x, y) \}.$$

$$\begin{array}{rcl} \partial^2 f(x \mid z)(w) &:= & D^*(\partial f)(x \mid z)(w) \\ \partial^2 f(x \mid z)(w) &:= & \hat{D}^*(\partial f)(x \mid z)(w) \end{array}$$

• As a simple example consider
$$(a > 0)$$

$$f(x) = \begin{cases} \frac{a}{2}x^2 & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$$

• Then the second order derivative (based on the limiting normal cone) is then

$$\partial^2 f(0 \mid 0)(w) = \begin{cases} \{aw\} & \text{if } w < 0\\ (-\infty, +\infty) & \text{if } w = 0\\ [aw, +\infty) & \text{otherwise} \end{cases}$$

• As a simple example consider (a > 0)

$$f(x) = \begin{cases} \frac{a}{2}x^2 & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$$

• Then the second order derivative (based on the limiting normal cone) is then

• Note that in the last example we have

we have $0 \in \partial f(0)$ and $\forall w \neq 0$ and all $q \in \partial^2 f(0 \mid 0)(w)$ we have $\langle q, w \rangle \geq aw^2 > 0$.

- Let $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ and assume the first-order condition $0 \in \partial f(\bar{x})$ holds.
- The the second order sufficiency condition

 $\forall \|h\| = 1, \ p \in D^*(\partial f)(\bar{x}, 0)(h) \text{ we have } \langle p, h \rangle \ge \beta > 0$ (5)

implies a tilt-stable local minimum when *f* is both prox-regular and subdifferentially continuous (convex functions satisfies both of these). • Note that in the last example we have

we have
$$0 \in \partial f(0)$$
 and
 $\forall w \neq 0$ and all $q \in \partial^2 f(0 \mid 0)(w)$
we have $\langle q, w \rangle \geq aw^2 > 0$.

- Let $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ and assume the first-order condition $0 \in \partial f(\bar{x})$ holds.
- The the second order sufficiency condition

 $\forall \|h\| = 1, \ p \in D^*(\partial f)(\bar{x}, 0)(h) \text{ we have } \langle p, h \rangle \ge \beta > 0$ (5)

implies a tilt-stable local minimum when *f* is both prox-regular and subdifferentially continuous (convex functions satisfies both of these). • Note that in the last example we have

we have
$$0 \in \partial f(0)$$
 and
 $\forall w \neq 0$ and all $q \in \partial^2 f(0 \mid 0)(w)$
we have $\langle q, w \rangle \geq aw^2 > 0$.

- Let $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ and assume the first-order condition $0 \in \partial f(\bar{x})$ holds.
- The the second order sufficiency condition

 $\forall \|h\| = 1, \ p \in D^* \left(\partial f\right)(\bar{x}, 0)(h) \text{ we have } \langle p, h \rangle \ge \beta > 0$ (5)

implies a tilt-stable local minimum when f is both prox-regular and subdifferentially continuous (convex functions satisfies both of these).

The following are well known to be equivalent:

- A multi-function $\Gamma : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is metrically regular at (\bar{x}, \bar{z}) .
- There exists $\mu, \eta > 0$ such that for all $(x, z) \in B_{\eta}(\bar{x}) \times [\Gamma(x) \cap B_{\eta}(\bar{y})]$ and $w \in D^*\Gamma(x, z)(y)$ we have $||y|| \leq \mu ||w||$.
- The multi-function $\Gamma^{-1} : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ has the Aubin (or Pseudo-Lischitzian) property: There exist neighbourhoods of \bar{x} and \bar{y}

 $\Gamma^{-1}(x') \cap W \subseteq \Gamma^{-1}(x) + \kappa \|x' - x\| \mathbb{B} \quad \text{ for all } x, x' \in V.$

• The coderivative nonsingularity condition holds:

 $0 \in D^*\Gamma(\bar{x}, \bar{z})(y)$ only if y = 0.

This later condition is known as the Mordukhovich criteria. i.e. ker $D^*\Gamma(\bar{x}, \bar{z})(\cdot) = \{0\}.$

The following are well known to be equivalent:

- A multi-function $\Gamma : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is metrically regular at (\bar{x}, \bar{z}) .
- There exists $\mu, \eta > 0$ such that for all $(x, z) \in B_{\eta}(\bar{x}) \times [\Gamma(x) \cap B_{\eta}(\bar{y})]$ and $w \in D^*\Gamma(x, z)(y)$ we have $\|y\| \leq \mu \|w\|$.
- The multi-function $\Gamma^{-1} : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ has the Aubin (or Pseudo-Lischitzian) property: There exist neighbourhoods of \bar{x} and \bar{y}

 $\Gamma^{-1}(x') \cap W \subseteq \Gamma^{-1}(x) + \kappa \|x' - x\| \mathbb{B} \quad \text{ for all } x, x' \in V.$

• The coderivative nonsingularity condition holds:

 $0 \in D^*\Gamma(\bar{x}, \bar{z})(y)$ only if y = 0.

This later condition is known as the Mordukhovich criteria. i.e. ker $D^*\Gamma(\bar{x}, \bar{z})(\cdot) = \{0\}.$

The following are well known to be equivalent:

- A multi-function $\Gamma : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is metrically regular at (\bar{x}, \bar{z}) .
- There exists $\mu, \eta > 0$ such that for all $(x, z) \in B_{\eta}(\bar{x}) \times [\Gamma(x) \cap B_{\eta}(\bar{y})]$ and $w \in D^*\Gamma(x, z)(y)$ we have $\|y\| \leq \mu \|w\|$.
- The multi-function $\Gamma^{-1} : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ has the Aubin (or Pseudo-Lischitzian) property: There exist neighbourhoods of \bar{x} and \bar{y}

$$\Gamma^{-1}(x') \cap \mathcal{W} \subseteq \Gamma^{-1}(x) + \kappa \|x' - x\|\mathbb{B} \quad \text{ for all } x, x' \in V.$$

• The coderivative nonsingularity condition holds:

 $0 \in D^*\Gamma(\bar{x}, \bar{z})(y)$ only if y = 0.

This later condition is known as the Mordukhovich criteria. i.e. ker $D^*\Gamma(\bar{x}, \bar{z})(\cdot) = \{0\}.$

The following are well known to be equivalent:

- A multi-function $\Gamma : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is metrically regular at (\bar{x}, \bar{z}) .
- There exists $\mu, \eta > 0$ such that for all $(x, z) \in B_{\eta}(\bar{x}) \times [\Gamma(x) \cap B_{\eta}(\bar{y})]$ and $w \in D^*\Gamma(x, z)(y)$ we have $\|y\| \leq \mu \|w\|$.
- The multi-function $\Gamma^{-1} : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ has the Aubin (or Pseudo-Lischitzian) property: There exist neighbourhoods of \bar{x} and \bar{y}

$$\Gamma^{-1}(x') \cap W \subseteq \Gamma^{-1}(x) + \kappa \|x' - x\|\mathbb{B} \quad \text{ for all } x, x' \in V.$$

• The coderivative nonsingularity condition holds:

$$0 \in D^*\Gamma(\bar{x}, \bar{z})(y)$$
 only if $y = 0$.

This later condition is known as the Mordukhovich criteria. i.e. ker $D^*\Gamma(\bar{x}, \bar{z})(\cdot) = \{0\}.$

Convexification in Tilt Stability

- The convex hull of a function f : ℝⁿ → ℝ_{+∞} is denoted by co f and corresponds to the proper lower-semi-continuous function whose epigraph is given by co epi f (the smallest closed convex set containing the graph).
- From the definition of tilt stability we have on $B_{\varepsilon}(\bar{x})$ that

 $f(x) \ge f(m(v)) + \langle x - m(v), v \rangle$

(i.e. $v \in \partial_{co} f(m(v))$) where $m(\cdot)$ is as defined in (3), and hence

$$\operatorname{co} f(x) \geq f(m(v)) + \langle x - m(v), v \rangle$$
,

i.e. $v \in \partial \operatorname{co} f(m(v))$ and $\operatorname{co} f(m(v)) = f(m(v))$. This shows that there is a strong convexification process involved with tilt stability.

Convexification in Tilt Stability

- The convex hull of a function f : ℝⁿ → ℝ_{+∞} is denoted by co f and corresponds to the proper lower-semi-continuous function whose epigraph is given by co epi f (the smallest closed convex set containing the graph).
- From the definition of tilt stability we have on $B_{\varepsilon}\left(ar{x}
 ight)$ that

$$f(x) \ge f(m(v)) + \langle x - m(v), v \rangle$$

(i.e. $v \in \partial_{co} f(m(v))$) where $m(\cdot)$ is as defined in (3), and hence

$$\operatorname{co} f(x) \geq f(m(v)) + \langle x - m(v), v \rangle$$
,

i.e. $v \in \partial \operatorname{co} f(m(v))$ and $\operatorname{co} f(m(v)) = f(m(v))$. This shows that there is a strong convexification process involved with tilt stability.

Proposition

Consider $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is a proper lower semi-continuous function and suppose that $m(z) \neq \emptyset$. Then for all sufficiently small $\varepsilon > 0$, in terms of the function $h(w) := f(\bar{x} + w) + \delta_{B_{\varepsilon}(0)}(w)$ we have

$$\operatorname{co} \arg\min_{x \in B_{\varepsilon}(\bar{x})} \left[f(x) - \langle x, z \rangle \right] = \arg\min_{w' \in \mathbb{R}^n} \left[\operatorname{co} h(w) - \langle v, z \rangle \right]$$

for all z sufficiently close to 0. Consequently when \bar{x} is a tilt stable local minimum of f we have

$$\arg\min_{x\in\mathcal{B}_{\varepsilon}\left(\bar{x}\right)}\left[f\left(x\right)-\left\langle x,z\right\rangle\right]=\arg\min_{w'\in\mathbb{R}^{n}}\left[\operatorname{co}h\left(w\right)-\left\langle v,z\right\rangle\right]$$

and a tilt stable local minimum of co h at x = 0.

Let f : ℝⁿ → ℝ be l.s.c. By the necessary\sufficient optimality conditions for convex function we have

$$\begin{split} m(z) &:= \arg \min_{x \in B_{\varepsilon}(\bar{x})} \left[f(x) - \langle x, z \rangle \right] \\ &\subseteq \operatorname{co} \arg \min_{x \in B_{\varepsilon}(\bar{x})} \left[f(x) - \langle x, z \rangle \right] \\ &= \arg \min_{w' \in \mathbb{R}^n} \left[\operatorname{co} h(w) - \langle v, z \rangle \right] = (\partial \operatorname{co} h)^{-1}(z) \cap B_{\varepsilon}(\bar{x}) \,. \end{split}$$

- Now as (∂ co h)⁻¹(z) = ∂h*(z) we have m(z) single valued and Lipschitz whenever ∂ co h is strongly metrically regular.
- In fact we only require ∂ co h metrically regular for this to occur thanks to the following result.

Let f : ℝⁿ → ℝ be l.s.c. By the necessary\sufficient optimality conditions for convex function we have

$$\begin{split} m(z) &:= \arg \min_{x \in B_{\varepsilon}(\bar{x})} \left[f(x) - \langle x, z \rangle \right] \\ &\subseteq \operatorname{co} \arg \min_{x \in B_{\varepsilon}(\bar{x})} \left[f(x) - \langle x, z \rangle \right] \\ &= \arg \min_{w' \in \mathbb{R}^n} \left[\operatorname{co} h(w) - \langle v, z \rangle \right] = (\partial \operatorname{co} h)^{-1}(z) \cap B_{\varepsilon}(\bar{x}) \,. \end{split}$$

- Now as (∂ co h)⁻¹(z) = ∂h*(z) we have m(z) single valued and Lipschitz whenever ∂ co h is strongly metrically regular.
- In fact we only require ∂ co h metrically regular for this to occur thanks to the following result.

Let f : ℝⁿ → ℝ be l.s.c. By the necessary\sufficient optimality conditions for convex function we have

$$\begin{split} m(z) &:= \arg \min_{x \in B_{\varepsilon}(\bar{x})} \left[f(x) - \langle x, z \rangle \right] \\ &\subseteq \operatorname{co} \arg \min_{x \in B_{\varepsilon}(\bar{x})} \left[f(x) - \langle x, z \rangle \right] \\ &= \arg \min_{w' \in \mathbb{R}^n} \left[\operatorname{co} h(w) - \langle v, z \rangle \right] = (\partial \operatorname{co} h)^{-1}(z) \cap B_{\varepsilon}(\bar{x}) \,. \end{split}$$

- Now as (∂ co h)⁻¹(z) = ∂h*(z) we have m(z) single valued and Lipschitz whenever ∂ co h is strongly metrically regular.
- In fact we only require ∂ co h metrically regular for this to occur thanks to the following result.

Theorem

Let H be a Hilbert space, $f: H \to \mathbb{R}_{+\infty}$ be lsc, prox-regular, and subdifferentially continuous at $\bar{x} \in int(dom\partial f)$ for some $\bar{v} \in \partial f(\bar{x})$. Assume in addition that the subdifferential mapping ∂f is pseudo-Lipschitz (or Lipschitz like) with modulus $L \ge 0$ around (\bar{x}, \bar{v}) . Then there exists $\epsilon > 0$ such that $\partial f(x) = \{\nabla f(x)\}$ for all $x \in B_{\epsilon}(\bar{x})$ with the Lipschitzian derivative $x \mapsto \nabla f(x)$ on $B_{\epsilon}(\bar{x})$.

- If ∂ co h is metrically regular at (0, z̄) then (∂ co h)⁻¹(z) = ∂h*(z) must be pseudo-Lipschitz around (0, z̄).
- As h* is convex it must be both prox-regular and subdifferentially continuous there forcing z → ∂h*(z) to be single valued.

同 ト イ ヨ ト イ ヨ ト

Theorem

Let H be a Hilbert space, $f : H \to \mathbb{R}_{+\infty}$ be lsc, prox-regular, and subdifferentially continuous at $\bar{x} \in int(dom\partial f)$ for some $\bar{v} \in \partial f(\bar{x})$. Assume in addition that the subdifferential mapping ∂f is pseudo-Lipschitz (or Lipschitz like) with modulus $L \ge 0$ around (\bar{x}, \bar{v}) . Then there exists $\epsilon > 0$ such that $\partial f(x) = \{\nabla f(x)\}$ for all $x \in B_{\epsilon}(\bar{x})$ with the Lipschitzian derivative $x \mapsto \nabla f(x)$ on $B_{\epsilon}(\bar{x})$.

• If $\partial \operatorname{co} h$ is metrically regular at $(0, \overline{z})$ then $(\partial \operatorname{co} h)^{-1}(z) = \partial h^*(z)$ must be pseudo-Lipschitz around $(0, \overline{z})$.

 As h^{*} is convex it must be both prox-regular and subdifferentially continuous there forcing z → ∂h^{*}(z) to be single valued.

伺 ト イヨト イヨト

Theorem

Let H be a Hilbert space, $f : H \to \mathbb{R}_{+\infty}$ be lsc, prox-regular, and subdifferentially continuous at $\bar{x} \in int(dom\partial f)$ for some $\bar{v} \in \partial f(\bar{x})$. Assume in addition that the subdifferential mapping ∂f is pseudo-Lipschitz (or Lipschitz like) with modulus $L \ge 0$ around (\bar{x}, \bar{v}) . Then there exists $\epsilon > 0$ such that $\partial f(x) = \{\nabla f(x)\}$ for all $x \in B_{\epsilon}(\bar{x})$ with the Lipschitzian derivative $x \mapsto \nabla f(x)$ on $B_{\epsilon}(\bar{x})$.

- If $\partial \operatorname{co} h$ is metrically regular at $(0, \overline{z})$ then $(\partial \operatorname{co} h)^{-1}(z) = \partial h^*(z)$ must be pseudo-Lipschitz around $(0, \overline{z})$.
- As h* is convex it must be both prox-regular and subdifferentially continuous there forcing z → ∂h*(z) to be single valued.
Equivalence of Metric Regularity vs Strong Metric Regularity

- We see that ∂ co h is metrically regular at (0, z̄) iff ∂ co h is strongly metrically regular at (0, z̄)
- Without better understanding the effect convexification has on either metric regularity of Lipschitz like behaviour of the inverse this does not shed light on the following problem.

Conjecture

An open question: Suppose f is prox-regular and subdifferentially continuous at \bar{x} for $\bar{z} \in \partial f(\bar{x})$. Is ∂f is metrically regular at (\bar{x}, \bar{z}) iff ∂f is strongly metrically regular at (\bar{x}, \bar{z}) ?

Equivalence of Metric Regularity vs Strong Metric Regularity

- We see that ∂ co h is metrically regular at (0, z̄) iff ∂ co h is strongly metrically regular at (0, z̄)
- Without better understanding the effect convexification has on either metric regularity of Lipschitz like behaviour of the inverse this does not shed light on the following problem.

Conjecture

An open question: Suppose f is prox-regular and subdifferentially continuous at \bar{x} for $\bar{z} \in \partial f(\bar{x})$. Is ∂f is metrically regular at (\bar{x}, \bar{z}) iff ∂f is strongly metrically regular at (\bar{x}, \bar{z}) ?

Equivalence of Metric Regularity vs Strong Metric Regularity

- We see that ∂ co h is metrically regular at (0, z̄) iff ∂ co h is strongly metrically regular at (0, z̄)
- Without better understanding the effect convexification has on either metric regularity of Lipschitz like behaviour of the inverse this does not shed light on the following problem.

Conjecture

An open question: Suppose f is prox-regular and subdifferentially continuous at \bar{x} for $\bar{z} \in \partial f(\bar{x})$. Is ∂f is metrically regular at (\bar{x}, \bar{z}) iff ∂f is strongly metrically regular at (\bar{x}, \bar{z}) ?

• The the second order sufficiency condition

for all $p \in D^*(\partial f)(\bar{x},0)(h)$ we have $\langle p,h \rangle \ge \beta \|h\|^2 > 0$ (6)

implies

• the sufficient (and necessary condition) for metric regularity i.e.

$$\|p\| \|h\| \ge \langle p, h \rangle \ge \beta \|h\|$$

or $\frac{1}{\beta} \|p\| \ge \|h\|$ for all $p \in D^* (\partial f) (\bar{x}, 0)(h)$.

• and the Modukhovich condition for a Lipschitz like behaviour of $p\mapsto (\partial f)^{-1}(p)$ i.e.

$$0 \in D^* \partial f(\bar{x}, \bar{z})(h)$$
 only if $h = 0$.

• The the second order sufficiency condition

for all $p \in D^*(\partial f)(\bar{x},0)(h)$ we have $\langle p,h \rangle \ge \beta \|h\|^2 > 0$ (6)

implies

• the sufficient (and necessary condition) for metric regularity i.e.

$$\begin{split} \|p\| \|h\| & \ge \langle p, h \rangle \ge \beta \|h\| \\ \text{or} \quad \frac{1}{\beta} \|p\| & \ge \|h\| \quad \text{for all } p \in D^* \left(\partial f\right) (\bar{x}, 0)(h). \end{split}$$

• and the Modukhovich condition for a Lipschitz like behaviour of $p\mapsto (\partial f)^{-1}(p)$ i.e.

 $0 \in D^* \partial f(\bar{x}, \bar{z})(h)$ only if h = 0.

• The the second order sufficiency condition

for all $p \in D^*(\partial f)(\bar{x},0)(h)$ we have $\langle p,h \rangle \ge \beta \|h\|^2 > 0$ (6)

implies

• the sufficient (and necessary condition) for metric regularity i.e.

$$\|p\| \|h\| \ge \langle p, h \rangle \ge \beta \|h\|$$

or $\frac{1}{\beta} \|p\| \ge \|h\|$ for all $p \in D^* (\partial f) (\bar{x}, 0)(h)$.

 and the Modukhovich condition for a Lipschitz like behaviour of p → (∂f)⁻¹(p) i.e.

$$0 \in D^* \partial f(\bar{x}, \bar{z})(h)$$
 only if $h = 0$.

• One might feel that this condition might have a natural necessary counter part associated with any local minimiser \bar{x} i.e.

for all $p \in \partial^2 f(\bar{x}, 0)(h) := D^* (\partial f) (\bar{x}, 0)(h)$ we have $\langle p, h \rangle \ge 0$ (7)

- But this is not so: Let $f(x_1, x_2) := (x_1^2 x_2^2) + \delta_{\Omega}(x_1, x_2)$, where $\Omega := \{(x_1, x_2) \mid (x_1 - x_2, x_1 + x_2) \in \mathbb{R}^2_+\}$. Then one can show $(0, -2) \in \partial^2 f((0, 0), 0)(0, 1)$ and so $\langle (0, -2), (0, 1) \rangle = -2 < 0$.
- This is compounded with the fact that one can replace (6) with the following: There exists κ > 0 such that for any r ∈ [0, κ⁻¹) we have

 $\kappa \|p\| \ge \|h\|$ and $\langle p, h \rangle \ge -r \|h\|^2$ whenever $p \in \partial^2 f(\bar{x}, 0)(h)$.

• An open problem is what is a "natural" second order necessary condition.

 One might feel that this condition might have a natural necessary counter part associated with any local minimiser x
i.e.

for all $p \in \partial^2 f(\bar{x}, 0)(h) := D^* (\partial f) (\bar{x}, 0)(h)$ we have $\langle p, h \rangle \ge 0$ (7)

- But this is not so: Let $f(x_1, x_2) := (x_1^2 x_2^2) + \delta_{\Omega}(x_1, x_2)$, where $\Omega := \{(x_1, x_2) \mid (x_1 - x_2, x_1 + x_2) \in \mathbb{R}^2_+\}$. Then one can show $(0, -2) \in \partial^2 f((0, 0), 0)(0, 1)$ and so $\langle (0, -2), (0, 1) \rangle = -2 < 0$.
- This is compounded with the fact that one can replace (6) with the following: There exists κ > 0 such that for any r ∈ [0, κ⁻¹) we have

 $\kappa \|p\| \ge \|h\|$ and $\langle p, h \rangle \ge -r \|h\|^2$ whenever $p \in \partial^2 f(\bar{x}, 0)(h)$.

• An open problem is what is a "natural" second order necessary condition.

 One might feel that this condition might have a natural necessary counter part associated with any local minimiser x
i.e.

for all $p \in \partial^2 f(\bar{x}, 0)(h) := D^* (\partial f) (\bar{x}, 0)(h)$ we have $\langle p, h \rangle \ge 0$ (7)

- But this is not so: Let $f(x_1, x_2) := (x_1^2 x_2^2) + \delta_{\Omega}(x_1, x_2)$, where $\Omega := \{(x_1, x_2) \mid (x_1 - x_2, x_1 + x_2) \in \mathbb{R}^2_+\}$. Then one can show $(0, -2) \in \partial^2 f((0, 0), 0)(0, 1)$ and so $\langle (0, -2), (0, 1) \rangle = -2 < 0$.
- This is compounded with the fact that one can replace (6) with the following: There exists κ > 0 such that for any r ∈ [0, κ⁻¹) we have

 $\kappa \|p\| \ge \|h\|$ and $\langle p, h \rangle \ge -r \|h\|^2$ whenever $p \in \partial^2 f(\bar{x}, 0)(h)$.

• An open problem is what is a "natural" second order necessary condition.

• One might feel that this condition might have a natural necessary counter part associated with any local minimiser \bar{x} i.e.

for all $p \in \partial^2 f(\bar{x}, 0)(h) := D^* (\partial f) (\bar{x}, 0)(h)$ we have $\langle p, h \rangle \ge 0$ (7)

- But this is not so: Let $f(x_1, x_2) := (x_1^2 x_2^2) + \delta_{\Omega}(x_1, x_2)$, where $\Omega := \{(x_1, x_2) \mid (x_1 - x_2, x_1 + x_2) \in \mathbb{R}^2_+\}$. Then one can show $(0, -2) \in \partial^2 f((0, 0), 0)(0, 1)$ and so $\langle (0, -2), (0, 1) \rangle = -2 < 0$.
- This is compounded with the fact that one can replace (6) with the following: There exists $\kappa > 0$ such that for any $r \in [0, \kappa^{-1})$ we have

 $\kappa \|p\| \ge \|h\|$ and $\langle p, h \rangle \ge -r \|h\|^2$ whenever $p \in \partial^2 f(\bar{x}, 0)(h)$.

 An open problem is what is a "natural" second order necessary condition.

 Moreover the quadratic growth condition and its equivalence to tilt stability and the former clearly implies the existence of δ > 0 such that for all x ∈ B_δ(x̄) we have

$$\begin{array}{ll} f''_{-}(x,z,h) &:=& \liminf_{t\downarrow 0 \atop h' \to h} \frac{2}{t^2} (f(x+th) - f(x) - \langle z,h \rangle) > 0 \\ & \quad \text{for all } (x,z) \in \operatorname{Graph} \partial f \cap B_{\delta}(\bar{x}) \text{ and } \|h\| = 1. \end{array}$$

This is actually equivalent to the positive definite coderivative condition (6) when f is prox-regular and subdifferentially continuous at x̄. Then we may apply the next result at each point (x, z) ∈ Graph ∂f ∩ B_δ(x̄) to the function f_z and then take limits i.e.

$$D^* \partial f(\bar{x}, 0)(h) = \limsup_{\substack{(x, z) \to \text{Graph } \partial_p f(\bar{x}, 0) \\ h' \to h}} \hat{D}^* \partial_p f(x, z)(h').$$

 Moreover the quadratic growth condition and its equivalence to tilt stability and the former clearly implies the existence of δ > 0 such that for all x ∈ B_δ(x̄) we have

$$\begin{array}{ll} f_{-}''(x,z,h) &:=& \liminf_{t\downarrow 0 \atop h' \to h} \frac{2}{t^2} (f(x+th) - f(x) - \langle z,h \rangle) > 0 \\ & \quad \text{for all } (x,z) \in \operatorname{Graph} \partial f \cap B_{\delta}(\bar{x}) \text{ and } \|h\| = 1. \end{array}$$

This is actually equivalent to the positive definite coderivative condition (6) when f is prox-regular and subdifferentially continuous at x̄. Then we may apply the next result at each point (x, z) ∈ Graph ∂f ∩ B_δ(x̄) to the function f_z and then take limits i.e.

$$D^*\partial f(\bar{x},0)(h) = \limsup_{\substack{(x,z) \to \text{Graph}\,\partial_p f(\bar{x},0)\\h' \to h}} \hat{D}^*\partial_p f(x,z)(h').$$

Theorem

Suppose $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is a prox-bounded, extended real valued, lower semi-continuous function. Suppose \bar{x} is a strict local minimum order 2. Then we have $0 \in \partial_p f(\bar{x})$ and the following holds:

There exists some $\beta > 0$ such that for all ||h|| = 1 and all $p \in \hat{D}^*(\partial_p f)(x, 0)(h)$ we have $\langle h, p \rangle \ge \beta > 0$.

Moreover we have

$$(f_z)''_-(x,0,h) \ge 0$$
 for all $||h|| = 1$,

is certainly necessary for a local minimum of f_z at x.

• When we know *f* is convex then we have a number of interesting inversions formula.

• The conjugate of *f* is given by

$$f^*(z) := \inf_{x} \{ \langle x, z \rangle - f(x) \}$$

and $z \in \partial f(x)$ iff $z \in (\partial f^*)^{-1}(x)$.

Moreover for the coderivative we have

 $q \in D^*(\partial f)(x \mid z)(w) \qquad \text{iff} \quad w \in D^*(\partial f^{-1})(z \mid x)(q)$ $\text{iff} \quad w \in D^*(\partial f^*)(z \mid x)(q).$

In particular

 $p \in D^* \left(\partial f\right) \left(\bar{x}, 0\right) \left(h\right) \text{ iff } h \in D^* \left(\partial f^*\right) \left(0, \bar{x}\right) \left(p\right). \tag{8}$

- When we know *f* is convex then we have a number of interesting inversions formula.
- The conjugate of f is given by

$$f^*(z) := \inf_x \{ \langle x, z \rangle - f(x) \}$$

and $z \in \partial f(x)$ iff $z \in (\partial f^*)^{-1}(x)$.

• Moreover for the coderivative we have

 $q \in D^*(\partial f)(x \mid z)(w) \qquad \text{iff} \quad w \in D^*(\partial f^{-1})(z \mid x)(q)$ $\text{iff} \quad w \in D^*(\partial f^*)(z \mid x)(q).$

In particular

 $p \in D^* \left(\partial f\right) \left(\bar{x}, 0\right) \left(h\right) \text{ iff } h \in D^* \left(\partial f^*\right) \left(0, \bar{x}\right) \left(p\right). \tag{8}$

- When we know *f* is convex then we have a number of interesting inversions formula.
- The conjugate of f is given by

$$f^*(z) := \inf_x \{ \langle x, z \rangle - f(x) \}$$

and $z \in \partial f(x)$ iff $z \in (\partial f^*)^{-1}(x)$.

• Moreover for the coderivative we have

$$q \in D^*(\partial f)(x \mid z)(w) \qquad \text{iff} \quad w \in D^*(\partial f^{-1})(z \mid x)(q)$$
$$\text{iff} \quad w \in D^*(\partial f^*)(z \mid x)(q).$$

In particular

 $p \in D^* \left(\partial f\right) \left(\bar{x}, 0\right) \left(h\right) \text{ iff } h \in D^* \left(\partial f^*\right) \left(0, \bar{x}\right) \left(p\right). \tag{8}$

- When we know *f* is convex then we have a number of interesting inversions formula.
- The conjugate of f is given by

$$f^*(z) := \inf_x \{ \langle x, z \rangle - f(x) \}$$

and $z \in \partial f(x)$ iff $z \in (\partial f^*)^{-1}(x)$.

• Moreover for the coderivative we have

$$q \in D^*(\partial f)(x \mid z)(w) \qquad \text{iff} \quad w \in D^*(\partial f^{-1})(z \mid x)(q)$$
$$\text{iff} \quad w \in D^*(\partial f^*)(z \mid x)(q).$$

In particular

$$p \in D^*(\partial f)(\bar{x}, 0)(h) \text{ iff } h \in D^*(\partial f^*)(0, \bar{x})(p).$$
(8)

• One might conjecture that the sufficient conditions for tilt stability is preserved under inverses but alas we need $h \neq 0$ in this conditions so the symmetry breaks on the possibility that there exists h = 0 and a $p \neq 0$ with

$$0 \in D^*\left(\partial f^*\right)(0,\bar{x})(\rho) = D^*\left(\partial f\right)^{-1}(0,\bar{x})(\rho).$$

- This singularity of the inverse need to be eliminated to get symmetry in this condition.
- One is reminded of the "Mordukhovich criteria" for the "Aubin property", but here it can fail.

• One might conjecture that the sufficient conditions for tilt stability is preserved under inverses but alas we need $h \neq 0$ in this conditions so the symmetry breaks on the possibility that there exists h = 0 and a $p \neq 0$ with

$$0 \in D^*\left(\partial f^*\right)(0,\bar{x})(p) = D^*\left(\partial f\right)^{-1}(0,\bar{x})(p).$$

- This singularity of the inverse need to be eliminated to get symmetry in this condition.
- One is reminded of the "Mordukhovich criteria" for the "Aubin property", but here it can fail.

• One might conjecture that the sufficient conditions for tilt stability is preserved under inverses but alas we need $h \neq 0$ in this conditions so the symmetry breaks on the possibility that there exists h = 0 and a $p \neq 0$ with

$$0 \in D^*\left(\partial f^*\right)(0,\bar{x})(p) = D^*\left(\partial f\right)^{-1}(0,\bar{x})(p).$$

- This singularity of the inverse need to be eliminated to get symmetry in this condition.
- One is reminded of the "Mordukhovich criteria" for the "Aubin property", but here it can fail.

The $\mathcal{V}\mathcal{U}$ decomposition

• When rel-int co $\partial f(\bar{x}) \neq \emptyset$ we can take

 $\bar{z} \in \operatorname{rel}\operatorname{-int}\operatorname{co}\partial f(\bar{x}) \cap \partial f(\bar{x})$.

- Define $\mathcal{V} := \operatorname{span} \{ \operatorname{co} \partial f(\bar{x}) \bar{z} \}$ and $\mathcal{U} := \mathcal{V}^{\perp}$.
- The idea here is that the subspace \mathcal{V} contains the nonsmoothness while the subspace \mathcal{U} contains the smooth part.

The $\mathcal{V}\mathcal{U}$ decomposition

• When rel-int co $\partial f(\bar{x}) \neq \emptyset$ we can take

$$\bar{z} \in \operatorname{rel}\operatorname{-int}\operatorname{co}\partial f(\bar{x}) \cap \partial f(\bar{x})$$
.

- Define $\mathcal{V} := \operatorname{span} \{ \operatorname{co} \partial f(\bar{x}) \bar{z} \}$ and $\mathcal{U} := \mathcal{V}^{\perp}$.
- The idea here is that the subspace \mathcal{V} contains the nonsmoothness while the subspace \mathcal{U} contains the smooth part.

The $\mathcal{V}\mathcal{U}$ decomposition

• When rel-int co $\partial f(\bar{x}) \neq \emptyset$ we can take

$$\bar{z} \in \operatorname{\mathsf{rel}}\operatorname{-}\operatorname{\mathsf{int}}\operatorname{\mathsf{co}}\partial f\left(\bar{x}
ight) \cap \partial f\left(\bar{x}
ight).$$

- Define $\mathcal{V} := \operatorname{span} \{ \operatorname{co} \partial f(\bar{x}) \bar{z} \}$ and $\mathcal{U} := \mathcal{V}^{\perp}$.
- The idea here is that the subspace \mathcal{V} contains the nonsmoothness while the subspace \mathcal{U} contains the smooth part.

• Under the $\mathcal{V}\mathcal{U}$ decomposition we can then find $\varepsilon > 0$ such that

$$\bar{z} + B_{\varepsilon}(0) \cap \mathcal{V} \subseteq \operatorname{co} \partial f(\bar{x}).$$
(9)

- One can then decompose $\overline{z} = \overline{z}_{\mathcal{U}} + \overline{z}_{\mathcal{V}}$ so that when $w = u + v \in \mathcal{U} \oplus \mathcal{V}$ we have $\langle \overline{z}, w \rangle = \langle \overline{z}_{\mathcal{U}}, u \rangle + \langle \overline{z}_{\mathcal{V}}, v \rangle$.
- Indeed we may decompose into the direct sum U ⊕ V and point x = x_U + x_V and use the box norm for this decomposition ||x x̄|| := max {||x_U x̄_U||, ||x_V x̄_V||}.

_emma

Consider $h : \mathcal{U} \to \mathbb{R}_{+\infty}$ is a proper lower semi-continuous function. Then $\partial_{co}h(u) \subseteq \partial [co h](u)$. When $\partial_{co}h(u) \neq \emptyset$ then co h(u) = h(u) and we have $\partial_{co}h(u) = \partial [co h](u)$.

• Under the \mathcal{VU} decomposition we can then find $\varepsilon > 0$ such that

$$\bar{z} + B_{\varepsilon}(0) \cap \mathcal{V} \subseteq \operatorname{co} \partial f(\bar{x}).$$
(9)

- One can then decompose $\bar{z} = \bar{z}_{\mathcal{U}} + \bar{z}_{\mathcal{V}}$ so that when $w = u + v \in \mathcal{U} \oplus \mathcal{V}$ we have $\langle \bar{z}, w \rangle = \langle \bar{z}_{\mathcal{U}}, u \rangle + \langle \bar{z}_{\mathcal{V}}, v \rangle$.
- Indeed we may decompose into the direct sum U ⊕ V and point x = x_U + x_V and use the box norm for this decomposition ||x x̄|| := max {||x_U x̄_U||, ||x_V x̄_V||}.

_emma

Consider $h : \mathcal{U} \to \mathbb{R}_{+\infty}$ is a proper lower semi-continuous function. Then $\partial_{co}h(u) \subseteq \partial [co h](u)$. When $\partial_{co}h(u) \neq \emptyset$ then co h(u) = h(u) and we have $\partial_{co}h(u) = \partial [co h](u)$.

• Under the \mathcal{VU} decomposition we can then find $\varepsilon > 0$ such that

$$\bar{z} + B_{\varepsilon}(0) \cap \mathcal{V} \subseteq \operatorname{co} \partial f(\bar{x}).$$
(9)

- One can then decompose $\bar{z} = \bar{z}_{\mathcal{U}} + \bar{z}_{\mathcal{V}}$ so that when $w = u + v \in \mathcal{U} \oplus \mathcal{V}$ we have $\langle \bar{z}, w \rangle = \langle \bar{z}_{\mathcal{U}}, u \rangle + \langle \bar{z}_{\mathcal{V}}, v \rangle$.
- Indeed we may decompose into the direct sum U ⊕ V and point x = x_U + x_V and use the box norm for this decomposition ||x x̄|| := max {||x_U x̄_U||, ||x_V x̄_V||}.

_emma

Consider $h : \mathcal{U} \to \mathbb{R}_{+\infty}$ is a proper lower semi-continuous function. Then $\partial_{co}h(u) \subseteq \partial [co h](u)$. When $\partial_{co}h(u) \neq \emptyset$ then co h(u) = h(u) and we have $\partial_{co}h(u) = \partial [co h](u)$.

• Under the \mathcal{VU} decomposition we can then find $\varepsilon > 0$ such that

$$\bar{z} + B_{\varepsilon}(0) \cap \mathcal{V} \subseteq \operatorname{co} \partial f(\bar{x}).$$
(9)

- One can then decompose $\bar{z} = \bar{z}_{\mathcal{U}} + \bar{z}_{\mathcal{V}}$ so that when $w = u + v \in \mathcal{U} \oplus \mathcal{V}$ we have $\langle \bar{z}, w \rangle = \langle \bar{z}_{\mathcal{U}}, u \rangle + \langle \bar{z}_{\mathcal{V}}, v \rangle$.
- Indeed we may decompose into the direct sum U ⊕ V and point x = x_U + x_V and use the box norm for this decomposition ||x x̄|| := max {||x_U x̄_U||, ||x_V x̄_V||}.

Lemma

Consider $h : \mathcal{U} \to \mathbb{R}_{+\infty}$ is a proper lower semi-continuous function. Then $\partial_{co}h(u) \subseteq \partial [coh](u)$. When $\partial_{co}h(u) \neq \emptyset$ then coh(u) = h(u) and we have $\partial_{co}h(u) = \partial [coh](u)$.

- Let $\mathcal{U}' \subseteq \mathcal{U}$ be a subspace, $\mathcal{V}' := (\mathcal{U}')^{\perp}$ and suppose $v(u) \in \arg\min_{v \in \mathcal{V}' \cap B_{\varepsilon}(0)} \{ \partial f(\bar{x} + u + v) \langle z_{\mathcal{V}'}, v \rangle \}.$
- Defined for $u \in \mathcal{U}'$ and $v(\cdot) : \mathcal{U}' \to \mathcal{V}' \cap B_{\varepsilon}(0)$ the axillary functions

$$\begin{aligned} k_{v}\left(u\right) &:= \quad h\left(u+v\left(u\right)\right) - \left\langle \bar{z}_{\mathcal{V}'}, u+v\left(u\right)\right\rangle \\ \text{where} \quad h\left(w\right) &:= \quad f\left(\bar{x}+w\right) + \delta_{\left[\mathcal{U}' \cap \mathcal{B}_{\varepsilon}(0)\right] \oplus \left[\mathcal{V}' \cap \mathcal{B}_{\varepsilon}(0)\right]}\left(w\right) \text{ and} \\ g\left(w\right) &:= \quad \operatorname{co} h\left(w\right) \end{aligned}$$

• Then the \mathcal{U}' -Lagrangian

$$L_{\mathcal{U}'}^{\varepsilon}\left(u\right) := \inf_{v'\in\mathcal{V}'}\left\{h\left(u+v'\right) - \left\langle \bar{z}_{\mathcal{V}}, v'\right\rangle\right\}.$$

• We have for the choice of v that $k_{v}(u) = L^{\varepsilon}_{\mathcal{U}'}(u)$ and

$$k_{\nu}^{*}\left(z_{\mathcal{U}'}\right) = h^{*}\left(z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}\right) = \left(L_{\mathcal{U}'}^{\varepsilon}\right)^{*}\left(z_{\mathcal{U}'}\right) : \mathcal{U}' \to \mathbb{R}_{+\infty}$$

- Let $\mathcal{U}' \subseteq \mathcal{U}$ be a subspace, $\mathcal{V}' := (\mathcal{U}')^{\perp}$ and suppose $v(u) \in \arg\min_{v \in \mathcal{V}' \cap B_{\varepsilon}(0)} \{ \partial f(\bar{x} + u + v) \langle z_{\mathcal{V}'}, v \rangle \}$.
- Defined for $u \in \mathcal{U}'$ and $v(\cdot) : \mathcal{U}' \to \mathcal{V}' \cap B_{\varepsilon}(0)$ the axillary functions

$$\begin{array}{ll} k_{v}\left(u\right) := & h\left(u+v\left(u\right)\right) - \left\langle \bar{z}_{\mathcal{V}'}, u+v\left(u\right)\right\rangle \\ \text{where} & h\left(w\right) := & f\left(\bar{x}+w\right) + \delta_{\left[\mathcal{U}' \cap B_{\varepsilon}(0)\right] \oplus \left[\mathcal{V}' \cap B_{\varepsilon}(0)\right]}\left(w\right) \text{ and} \\ g\left(w\right) := & \operatorname{co} h\left(w\right) \end{array}$$

• Then the \mathcal{U}' -Lagrangian

$$L^{\varepsilon}_{\mathcal{U}'}(u) := \inf_{v' \in \mathcal{V}'} \left\{ h\left(u + v' \right) - \left\langle \bar{z}_{\mathcal{V}}, v' \right\rangle \right\}.$$

• We have for the choice of v that $k_v(u) = L^{\varepsilon}_{\mathcal{U}'}(u)$ and

$$k_{v}^{*}\left(z_{\mathcal{U}'}\right) = h^{*}\left(z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}\right) = \left(L_{\mathcal{U}'}^{\varepsilon}\right)^{*}\left(z_{\mathcal{U}'}\right) : \mathcal{U}' \to \mathbb{R}_{+\infty}$$

- Let $\mathcal{U}' \subseteq \mathcal{U}$ be a subspace, $\mathcal{V}' := (\mathcal{U}')^{\perp}$ and suppose $v(u) \in \arg\min_{v \in \mathcal{V}' \cap B_{\varepsilon}(0)} \{ \partial f(\bar{x} + u + v) \langle z_{\mathcal{V}'}, v \rangle \}.$
- Defined for $u \in \mathcal{U}'$ and $v(\cdot) : \mathcal{U}' \to \mathcal{V}' \cap B_{\varepsilon}(0)$ the axillary functions

$$\begin{aligned} k_{v}\left(u\right) &:= \quad h\left(u+v\left(u\right)\right) - \left\langle \bar{z}_{\mathcal{V}'}, u+v\left(u\right)\right\rangle \\ \text{where} \quad h\left(w\right) &:= \quad f\left(\bar{x}+w\right) + \delta_{\left[\mathcal{U}' \cap B_{\varepsilon}(0)\right] \oplus \left[\mathcal{V}' \cap B_{\varepsilon}(0)\right]}\left(w\right) \text{ and} \\ g\left(w\right) &:= \quad \operatorname{co} h\left(w\right) \end{aligned}$$

• Then the \mathcal{U}' -Lagrangian

$$L^{\varepsilon}_{\mathcal{U}'}(u) := \inf_{\mathbf{v}' \in \mathcal{V}'} \left\{ h\left(u + \mathbf{v}' \right) - \left\langle \bar{z}_{\mathcal{V}}, \mathbf{v}' \right\rangle \right\}.$$

• We have for the choice of v that $k_v(u) = L^{\varepsilon}_{\mathcal{U}'}(u)$ and

$$k_{v}^{*}\left(z_{\mathcal{U}'}\right) = h^{*}\left(z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}\right) = \left(L_{\mathcal{U}'}^{\varepsilon}\right)^{*}\left(z_{\mathcal{U}'}\right) : \mathcal{U}' \to \mathbb{R}_{+\infty}$$

- Let $\mathcal{U}' \subseteq \mathcal{U}$ be a subspace, $\mathcal{V}' := (\mathcal{U}')^{\perp}$ and suppose $v(u) \in \arg\min_{v \in \mathcal{V}' \cap B_{\varepsilon}(0)} \{ \partial f(\bar{x} + u + v) \langle z_{\mathcal{V}'}, v \rangle \}$.
- Defined for $u \in \mathcal{U}'$ and $v(\cdot) : \mathcal{U}' \to \mathcal{V}' \cap B_{\varepsilon}(0)$ the axillary functions

$$\begin{array}{ll} k_{v}\left(u\right) := & h\left(u+v\left(u\right)\right) - \left\langle \bar{z}_{\mathcal{V}'}, u+v\left(u\right)\right\rangle \\ \text{where} & h\left(w\right) := & f\left(\bar{x}+w\right) + \delta_{\left[\mathcal{U}' \cap \mathcal{B}_{\varepsilon}(0)\right] \oplus \left[\mathcal{V}' \cap \mathcal{B}_{\varepsilon}(0)\right]}\left(w\right) \text{ and} \\ g\left(w\right) := & \operatorname{co} h\left(w\right) \end{array}$$

• Then the \mathcal{U}' -Lagrangian

$$L^{\varepsilon}_{\mathcal{U}'}(u) := \inf_{v' \in \mathcal{V}'} \left\{ h\left(u + v' \right) - \left\langle \bar{z}_{\mathcal{V}}, v' \right\rangle \right\}.$$

• We have for the choice of v that $k_v(u) = L^{\varepsilon}_{\mathcal{U}'}(u)$ and

$$k_{\mathsf{v}}^{*}\left(z_{\mathcal{U}'}\right) = h^{*}\left(z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}\right) = \left(L_{\mathcal{U}'}^{\varepsilon}\right)^{*}\left(z_{\mathcal{U}'}\right) : \mathcal{U}' \to \mathbb{R}_{+\infty}$$

The \mathcal{U}' -Lagrangian and Tilt Stability

Proposition

Consider $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is a proper lower semi-continuous function and suppose that \bar{x} give a tilt stable local minimum of f.

• Then for $u = P_{\mathcal{U}'} [m(z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'})] \in B_{\varepsilon}^{\mathcal{U}'}(0)$ we have

$$z_{\mathcal{U}'} \in \partial_{\mathsf{co}} \left[L_{\mathcal{U}'}^{\varepsilon} + \delta_{B_{\varepsilon}^{\mathcal{U}'}(0)} \right] (u) \tag{10}$$

Moreover for any $u \in B_{\varepsilon}^{\mathcal{U}'}(0)$ and $z_{\mathcal{U}'}$ taken as in (10) we have

 $(u, v(u)) \in m(z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}) = rgmin\{g(u+v) - \langle z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}, u+v \rangle\}$

 In particular z
{U'} ∈ ∂{co}k_v (0) = ∂ co k_v (0) and k_v (u) = co k_v (u). Moreover for u ∈ U' we have

$$k_{v}(u) = [\operatorname{co} h](u + v(u)) - \langle \bar{z}_{\mathcal{V}}, v(\cdot) \rangle(u)$$

= $h(u + v(u)) - \langle \bar{z}_{\mathcal{V}}, v(u) \rangle = \operatorname{co} k_{v}(u).$

The \mathcal{U}' -Lagrangian and Tilt Stability

Proposition

Consider $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is a proper lower semi-continuous function and suppose that \bar{x} give a tilt stable local minimum of f.

• Then for $u = P_{\mathcal{U}'}\left[m\left(z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}\right)\right] \in B_{\epsilon}^{\mathcal{U}'}\left(0\right)$ we have

$$z_{\mathcal{U}'} \in \partial_{\mathsf{co}} \left[L^{\varepsilon}_{\mathcal{U}'} + \delta_{\mathcal{B}^{\mathcal{U}'}_{\varepsilon}(0)} \right] (u) \tag{10}$$

Moreover for any $u \in B_{\epsilon}^{\mathcal{U}'}(0)$ and $z_{\mathcal{U}'}$ taken as in (10) we have

 $(u, v(u)) \in m(z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}) = \arg\min\left\{g(u+v) - \langle z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}, u+v \rangle\right\}$

 In particular z
{U'} ∈ ∂{co}k_v (0) = ∂ co k_v (0) and k_v (u) = co k_v (u). Moreover for u ∈ U' we have

$$k_{v}(u) = [\operatorname{co} h](u + v(u)) - \langle \bar{z}_{\mathcal{V}}, v(\cdot) \rangle(u)$$

= $h(u + v(u)) - \langle \bar{z}_{\mathcal{V}}, v(u) \rangle = \operatorname{co} k_{v}(u).$

The \mathcal{U}' -Lagrangian and Tilt Stability

Proposition

Consider $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is a proper lower semi-continuous function and suppose that \bar{x} give a tilt stable local minimum of f.

• Then for $u = P_{\mathcal{U}'}\left[m\left(z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}\right)\right] \in B_{\epsilon}^{\mathcal{U}'}\left(0\right)$ we have

$$z_{\mathcal{U}'} \in \partial_{\mathsf{co}} \left[L^{\varepsilon}_{\mathcal{U}'} + \delta_{\mathcal{B}^{\mathcal{U}'}_{\varepsilon}(0)} \right] (u) \tag{10}$$

Moreover for any $u \in B_{\epsilon}^{\mathcal{U}'}(0)$ and $z_{\mathcal{U}'}$ taken as in (10) we have

 $(u, v(u)) \in m(z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}) = \arg\min \{g(u+v) - \langle z_{\mathcal{U}'} + \bar{z}_{\mathcal{V}'}, u+v \rangle\}$

 In particular z
{U'} ∈ ∂{co}k_v (0) = ∂ co k_v (0) and k_v (u) = co k_v (u). Moreover for u ∈ U' we have

$$\begin{aligned} k_{v}\left(u\right) &= \left[\operatorname{co} h\right]\left(u+v\left(u\right)\right) - \left\langle \bar{z}_{\mathcal{V}}, v\left(\cdot\right)\right\rangle\left(u\right) \\ &= h\left(u+v\left(u\right)\right) - \left\langle \bar{z}_{\mathcal{V}}, v\left(u\right)\right\rangle = \operatorname{co} k_{v}\left(u\right). \end{aligned}$$

Some other second order quantities

Definition

The function f is said to be twice sub-differentiable (or possess a subjet) at x if the following set is nonempty;

$$\partial^{2,-} f(x) = \{(z, Q) : f(x') \ge f(x) + \langle z, x' - x \rangle + \frac{1}{2} \langle Q(x' - x), (x' - x) \rangle + o(\|x' - x\|^2) \text{ for } x' \in B_{\delta}(x) \}$$

The subhessians at $(x, z) \in \text{graph } \partial f$ are given by $\partial^{2,-}f(x, z) := \{Q \in \mathcal{S}(n) \mid (z, Q) \in \partial^{2,-}f(x)\}.$

② The limiting subjet of f at x is defined to be: $<u>∂</u>² f(x) = \lim \sup_{u \to f_{x}} ∂^{2,-} f(u) \text{ and the associated limiting subhessians for } z ∈ ∂f(x) \text{ are }
 <u>∂</u>² f(x, z) = {Q ∈ S(n) | (z, Q) ∈ <u>∂</u>² f(x)}.$

Note $\partial^{2,-} f(x,z) \neq \emptyset$ iff $\partial_p f(x) \neq \emptyset$. Andrew Eberhard RMIT RMIT University ◆ 同 ♪ ◆ 三 ♪

Some other second order quantities

Definition

The function f is said to be twice sub-differentiable (or possess a subjet) at x if the following set is nonempty;

$$\partial^{2,-} f(x) = \{(z, Q) : f(x') \ge f(x) + \langle z, x' - x \rangle + \frac{1}{2} \langle Q(x' - x), (x' - x) \rangle + o(\|x' - x\|^2) \text{ for } x' \in B_{\delta}(x) \}$$

The subhessians at $(x, z) \in \text{graph} \partial f$ are given by $\partial^{2,-}f(x, z) := \{Q \in \mathcal{S}(n) \mid (z, Q) \in \partial^{2,-}f(x)\}.$

O The limiting subjet of f at x is defined to be: $<u>∂</u>² f(x) = \lim \sup_{u \to f_{x}} ∂^{2,-} f(u) \text{ and the associated limiting subhessians for } z ∈ ∂f(x) \text{ are }
 <u>∂</u>² f(x, z) = {Q ∈ S(n) | (z, Q) ∈ <u>∂</u>² f(x)}.$

Note $\partial^{2,-} f(x,z) \neq \emptyset$ iff $\partial_p f(x) \neq \emptyset$.
Some other second order quantities

Definition

The function f is said to be twice sub-differentiable (or possess a subjet) at x if the following set is nonempty;

$$\partial^{2,-} f(x) = \{(z, Q) : f(x') \ge f(x) + \langle z, x' - x \rangle + \frac{1}{2} \langle Q(x' - x), (x' - x) \rangle + o(\|x' - x\|^2) \text{ for } x' \in B_{\delta}(x) \}$$

The subhessians at $(x, z) \in \text{graph} \partial f$ are given by $\partial^{2,-}f(x, z) := \{Q \in \mathcal{S}(n) \mid (z, Q) \in \partial^{2,-}f(x)\}.$

 The limiting subjet of f at x is defined to be: <u>∂</u>²f(x) = lim sup_{u→fx} ∂^{2,-}f(u) and the associated limiting subhessians for z ∈ ∂f(x) are <u>∂</u>²f(x, z) = {Q ∈ S(n) | (z, Q) ∈ <u>∂</u>²f(x)}.

Note
$$\partial^{2,-} f(x,z) \neq \emptyset$$
 iff $\partial_p f(x) \neq \emptyset$.

The \mathcal{U}^2 subspace of \mathcal{U}

We define the rank one barrier cone for $\frac{\partial^2 f(x, z)}{\partial x}$ as

$$b^{1}(\underline{\partial}^{2}f(x,z)) := \{h \in \mathbb{R}^{n} \mid q(\underline{\partial}^{2}f(x,z))(h) \\ := \sup\{\langle Qh, h \rangle \mid Q \in \underline{\partial}^{2}f(x,z)\} < \infty\}.$$

and the second order component of \mathcal{U} as $\mathcal{U}^2 := b^1(\underline{\partial}^2 f(x, z))$.

Lemma

Let the function $f : \mathbb{R}^n \mapsto \mathbb{R}_{+\infty}$ be finite at \bar{x} and denote $\mathcal{U}^2 = b^1(\underline{\partial}^2 f(\bar{x}, \bar{z}))$. Then

$$\mathcal{U}^{2} \subseteq \mathcal{U} = \left\{ h \mid -\delta^{*}_{\partial f(\bar{x})}(-h) = \delta^{*}_{\partial f(\bar{x})}(h) = \langle \bar{z}, h \rangle \right\}.$$
(11)

Corollary

Suppose that f is quadratically minorized and is prox-regular at \bar{x} for $\bar{z} \in \partial f(\bar{x})$ with respect to ε and r. Then $b^1(\underline{\partial}^2 f(\bar{x}, \bar{z}))$ is a linear subspace of \mathbb{R}^n .

The \mathcal{U}^2 subspace of \mathcal{U}

We define the rank one barrier cone for $\frac{\partial^2 f(x, z)}{\partial x}$ as

$$b^{1}(\underline{\partial}^{2}f(x,z)) := \{h \in \mathbb{R}^{n} \mid q(\underline{\partial}^{2}f(x,z))(h) \\ := \sup\{\langle Qh, h \rangle \mid Q \in \underline{\partial}^{2}f(x,z)\} < \infty\}.$$

and the second order component of \mathcal{U} as $\mathcal{U}^2 := b^1(\underline{\hat{c}}^2 f(x, z)).$

Lemma

Let the function $f : \mathbb{R}^n \mapsto \mathbb{R}_{+\infty}$ be finite at \bar{x} and denote $\mathcal{U}^2 = b^1(\underline{\partial}^2 f(\bar{x}, \bar{z}))$. Then

$$\mathcal{U}^{2} \subseteq \mathcal{U} = \left\{ h \mid -\delta^{*}_{\partial f(\bar{x})}(-h) = \delta^{*}_{\partial f(\bar{x})}(h) = \langle \bar{z}, h \rangle \right\}.$$
(11)

Corollary

Suppose that f is quadratically minorized and is prox-regular at \bar{x} for $\bar{z} \in \partial f(\bar{x})$ with respect to ε and r. Then $b^1(\underline{\partial}^2 f(\bar{x}, \bar{z}))$ is a linear subspace of \mathbb{R}^n .

• The function $v(\cdot)$ inherits the uniqueness of $m(\cdot)$.

- The function $k_v(\cdot)$ being well defined also inherits the tilt stability of the local minimum \bar{x} of f but is shifted to $0 \in \mathcal{U}$.
- We have co k_v inherting tilt stability from k_v and so $q \neq 0$

 $\langle p,q\rangle > 0$ for all $p \in D^*\left(\partial \left[\operatorname{co} k_v\right]\right)\left(0|0
ight)\left(q\right)$.

- Tilt stability can be shown to be equivalent to there being a stable strong local minimizers of co k_v at 0.
- We say (co k_v)_z := co k_v ⟨z, ·⟩ has a strict local minimum order two at u' relative to B_δ(0) when (co k_v)_z(u) ≥ (co k_v)_z(u') + β ||u u'||² for all u', u ∈ B_δ(0).

- The function $v(\cdot)$ inherits the uniqueness of $m(\cdot)$.
- The function k_v(·) being well defined also inherits the tilt stability of the local minimum x̄ of f but is shifted to 0 ∈ U.
- We have $\operatorname{co} k_v$ inherting tilt stability from k_v and $\operatorname{so} q \neq 0$

 $\langle p,q\rangle > 0$ for all $p \in D^*\left(\partial \left[\operatorname{co} k_{\nu}\right]\right)\left(0|0
ight)\left(q\right)$.

- Tilt stability can be shown to be equivalent to there being a stable strong local minimizers of co k_v at 0.
- We say (co k_v)_z := co k_v ⟨z, ·⟩ has a strict local minimum order two at u' relative to B_δ(0) when (co k_v)_z(u) ≥ (co k_v)_z(u') + β ||u u'||² for all u', u ∈ B_δ(0).

- The function $v(\cdot)$ inherits the uniqueness of $m(\cdot)$.
- The function k_v(·) being well defined also inherits the tilt stability of the local minimum x̄ of f but is shifted to 0 ∈ U.
- We have co k_v inherting tilt stability from k_v and so $q \neq 0$

 $\langle p,q \rangle > 0$ for all $p \in D^* \left(\partial \left[\operatorname{co} k_v \right] \right) \left(0 | 0
ight) (q)$.

- Tilt stability can be shown to be equivalent to there being a stable strong local minimizers of co k_v at 0.
- We say (co k_v)_z := co k_v ⟨z, ·⟩ has a strict local minimum order two at u' relative to B_δ(0) when (co k_v)_z(u) ≥ (co k_v)_z(u') + β ||u u'||² for all u', u ∈ B_δ(0)

- The function $v(\cdot)$ inherits the uniqueness of $m(\cdot)$.
- The function k_v(·) being well defined also inherits the tilt stability of the local minimum x̄ of f but is shifted to 0 ∈ U.
- We have co k_v inherting tilt stability from k_v and so $q \neq 0$

 $\langle p,q \rangle > 0$ for all $p \in D^* \left(\partial \left[\operatorname{co} k_{\nu} \right] \right) \left(0 | 0 \right) \left(q \right)$.

- Tilt stability can be shown to be equivalent to there being a stable strong local minimizers of co k_v at 0.
- We say (co k_v)_z := co k_v ⟨z, ·⟩ has a strict local minimum order two at u' relative to B_δ(0) when (co k_v)_z(u) ≥ (co k_v)_z(u') + β ||u u'||² for all u', u ∈ B_δ(0).

直 と く ヨ と く ヨ と

- The function $v(\cdot)$ inherits the uniqueness of $m(\cdot)$.
- The function k_v(·) being well defined also inherits the tilt stability of the local minimum x̄ of f but is shifted to 0 ∈ U.
- We have co k_v inherting tilt stability from k_v and so $q \neq 0$

 $\langle p,q \rangle > 0$ for all $p \in D^* \left(\partial \left[\operatorname{co} k_{\nu} \right] \right) \left(0 | 0 \right) (q)$.

- Tilt stability can be shown to be equivalent to there being a stable strong local minimizers of co k_v at 0.
- We say $(\operatorname{co} k_v)_z := \operatorname{co} k_v \langle z, \cdot \rangle$ has a strict local minimum order two at u' relative to $B_{\delta}(0)$ when $(\operatorname{co} k_v)_z(u) \ge (\operatorname{co} k_v)_z(u') + \beta ||u u'||^2$ for all $u', u \in B_{\delta}(0)$.

 The tilt stability of co k_v has some other implications. The uniqueness of the tilt minimizers corresponds to the local uniqueness of the mapping

$$\operatorname{argmin}\{\operatorname{co} k_{\mathsf{v}} - \langle z, \cdot \rangle + \delta_{B_{\delta}(0)}\} \subseteq (\partial_{\mathsf{p}} \operatorname{co} k_{\mathsf{v}})^{-1}(z) \cap B_{\delta}(0).$$

• Along with the Aubin Property

$$(\partial_p \operatorname{co} k_v)^{-1}(z) \cap B_{\delta}(0) \subseteq (\partial_p \operatorname{co} k_v)^{-1}(z') + L \|z - z'\|B_1(0)$$

for all $z, z' \in B_{\delta}(0) \cap \mathcal{U}^2$.

 This later property is known to forces single valuedness of (∂ co k_v)⁻¹ = ∂(co k_v)* locally in some small ball. Indeed u → ∇(co k_v)* = ∇k_v* exists and is Lipchitz at a rate L.

 The tilt stability of co k_v has some other implications. The uniqueness of the tilt minimizers corresponds to the local uniqueness of the mapping

$$\operatorname{argmin}\{\operatorname{co} k_{\mathsf{v}} - \langle z, \cdot \rangle + \delta_{B_{\delta}(0)}\} \subseteq (\partial_{\mathsf{p}} \operatorname{co} k_{\mathsf{v}})^{-1}(z) \cap B_{\delta}(0).$$

• Along with the Aubin Property

$$(\partial_{\rho} \operatorname{co} k_{\nu})^{-1}(z) \cap B_{\delta}(0) \subseteq (\partial_{\rho} \operatorname{co} k_{\nu})^{-1}(z') + L \|z - z'\|B_{1}(0)$$

for all $z, z' \in B_{\delta}(0) \cap \mathcal{U}^2$.

 This later property is known to forces single valuedness of (∂ co k_v)⁻¹ = ∂(co k_v)* locally in some small ball. Indeed u → ∇(co k_v)* = ∇k_v* exists and is Lipchitz at a rate L.

 The tilt stability of co k_v has some other implications. The uniqueness of the tilt minimizers corresponds to the local uniqueness of the mapping

$$\operatorname{argmin}\{\operatorname{co} k_{\mathsf{v}} - \langle z, \cdot \rangle + \delta_{B_{\delta}(0)}\} \subseteq (\partial_{\mathsf{p}} \operatorname{co} k_{\mathsf{v}})^{-1}(z) \cap B_{\delta}(0).$$

• Along with the Aubin Property

$$(\partial_{\rho} \operatorname{co} k_{\nu})^{-1}(z) \cap B_{\delta}(0) \subseteq (\partial_{\rho} \operatorname{co} k_{\nu})^{-1}(z') + L \|z - z'\|B_{1}(0)$$

for all $z, z' \in B_{\delta}(0) \cap \mathcal{U}^2$.

 This later property is known to forces single valuedness of (∂ co k_v)⁻¹ = ∂(co k_v)* locally in some small ball. Indeed u → ∇(co k_v)* = ∇k_v* exists and is Lipchitz at a rate L.

- Symmetrically one can verify of the Rockafellar condition for tilt stability of (co k_v)* will lead via a similar argument to the conclusion that (co k_v)** = co k_v is differentiable with a Lipschitz gradient on U².
- The bounded second order behaviour on U^2 is critical here, in ruling out a singularity of the inverse coderivative at z = 0.
- This in turn implies the same conclusion for

$$u \mapsto \operatorname{co} f(\bar{x} + u + v(u))$$
 for $u \in \mathcal{U}^2$.

- Symmetrically one can verify of the Rockafellar condition for tilt stability of (co k_v)* will lead via a similar argument to the conclusion that (co k_v)** = co k_v is differentiable with a Lipschitz gradient on U².
- The bounded second order behaviour on U^2 is critical here, in ruling out a singularity of the inverse coderivative at z = 0.
- This in turn implies the same conclusion for

 $u \mapsto \operatorname{co} f(\bar{x} + u + v(u))$ for $u \in \mathcal{U}^2$.

- Symmetrically one can verify of the Rockafellar condition for tilt stability of (co k_v)* will lead via a similar argument to the conclusion that (co k_v)** = co k_v is differentiable with a Lipschitz gradient on U².
- The bounded second order behaviour on U^2 is critical here, in ruling out a singularity of the inverse coderivative at z = 0.
- This in turn implies the same conclusion for

$$u \mapsto \operatorname{co} f(\bar{x} + u + v(u))$$
 for $u \in \mathcal{U}^2$.

- Symmetrically one can verify of the Rockafellar condition for tilt stability of (co k_v)* will lead via a similar argument to the conclusion that (co k_v)** = co k_v is differentiable with a Lipschitz gradient on U².
- The bounded second order behaviour on U^2 is critical here, in ruling out a singularity of the inverse coderivative at z = 0.
- This in turn implies the same conclusion for

$$u \mapsto \operatorname{co} f(\bar{x} + u + v(u)) \quad \text{for } u \in \mathcal{U}^2.$$

Theorem

Consider $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is a proper lower semi-continuous function, quadratically minorized and a prox-regular function at \bar{x} for $0 \in \partial f(\bar{x})$. Suppose in addition f admits a nontrivial subspace $\mathcal{U}^2 := b^1 \left(\underline{\partial}^2 f(\bar{x}, 0)\right) \subseteq \mathcal{U}$. Suppose that f has a tilt stable local minimum at \bar{x} and let $g(w) := [\operatorname{co} h](w)$ and $\{v(u)\} = \arg\min_{v' \in \mathcal{V}^2 \cap B_{\varepsilon}(0)} f(\bar{x} + u + v') : \mathcal{U}^2 \to \mathcal{V}^2$. Then

• we have
$$g(u + v(u)) = f(\bar{x} + u + v(u))$$
 and
 $\nabla_{u}g(u + v(u))$ existing as Lipschitz functions for
 $u \in B_{\delta}^{\mathcal{U}^{2}}(0)$,

• moreover $\mathcal{M} := \left\{ (u, v(u)) \mid u \in B_{\varepsilon}^{\mathcal{U}^2}(0) \right\}$ is a manifold on which the restriction to \mathcal{M} of f is smooth.

Theorem

Consider $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is a proper lower semi-continuous function, quadratically minorized and a prox-regular function at \bar{x} for $0 \in \partial f(\bar{x})$. Suppose in addition f admits a nontrivial subspace $\mathcal{U}^2 := b^1 \left(\underline{\partial}^2 f(\bar{x}, 0) \right) \subseteq \mathcal{U}$. Suppose that f has a tilt stable local minimum at \bar{x} and let $g(w) := [\operatorname{co} h](w)$ and $\{v(u)\} = \arg\min_{v' \in \mathcal{V}^2 \cap B_{\varepsilon}(0)} f(\bar{x} + u + v') : \mathcal{U}^2 \to \mathcal{V}^2$. Then

• we have $g(u + v(u)) = f(\bar{x} + u + v(u))$ and $\nabla_{u}g(u + v(u))$ existing as Lipschitz functions for $u \in B_{\delta}^{\mathcal{U}^{2}}(0)$,

• moreover $\mathcal{M} := \left\{ (u, v(u)) \mid u \in B_{\varepsilon}^{\mathcal{U}^2}(0) \right\}$ is a manifold on which the restriction to \mathcal{M} of f is smooth.

Theorem

Consider $f : \mathbb{R}^n \to \mathbb{R}_{+\infty}$ is a proper lower semi-continuous function, quadratically minorized and a prox-regular function at \bar{x} for $0 \in \partial f(\bar{x})$. Suppose in addition f admits a nontrivial subspace $\mathcal{U}^2 := b^1 \left(\underline{\partial}^2 f(\bar{x}, 0) \right) \subseteq \mathcal{U}$. Suppose that f has a tilt stable local minimum at \bar{x} and let $g(w) := [\operatorname{co} h](w)$ and $\{v(u)\} = \arg\min_{v' \in \mathcal{V}^2 \cap B_{\varepsilon}(0)} f(\bar{x} + u + v') : \mathcal{U}^2 \to \mathcal{V}^2$. Then

- we have $g(u + v(u)) = f(\bar{x} + u + v(u))$ and $\nabla_{u}g(u + v(u))$ existing as Lipschitz functions for $u \in B_{\delta}^{\mathcal{U}^{2}}(0)$,
- moreover $\mathcal{M} := \left\{ (u, v(u)) \mid u \in B_{\varepsilon}^{\mathcal{U}^2}(0) \right\}$ is a manifold on which the restriction to \mathcal{M} of f is smooth.

References

A. C. Eberhard, Y. Luo and S. Liu, (2015), *Partial Smoothness*, *Tilt Stability and the* \mathcal{UV} *decomposition*, arXiv:1602.07768, 2015

A. Eberhard and R. Wenczel, (2012), A study of tilt-stable optimality and sufficient conditions, *Nonlin. Anal.* **75**(3), 1260–1281.

D. Drusvyatskiy and A.S. Lewis (2013), *Tilt Stability, Uniform Quadratic Growth and Strong Metric Regularity of the Subdifferential*, SIAM J. Opt., **23**(1), 256-267.

M. Bacak, J. M. Borwein, A. Eberhard and B. Mordukhovich (2010), *Infimal convolutions and Lipschitzian properties of subdifferentials for prox-regular functions in Hilbert spaces*, Journal of Convex Analysis, **17**(3&4), 737-763.

Eberhard A.C. Prox–Regularity and Subjets (2001), Optimization and Related Topics, Ed. A. Rubinov, Applied Optimization Volumes, Kluwer Acad. Pub., 237-313.